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Abstract—Data creation for Human Activity Recognition
(HAR) requires an immense human effort and contextual knowl-
edge for manual annotation. This paper proposes a framework
for semi-automated annotation of sequential data in the order
picking process using a motion capturing system. Additionally,
it introduces proper annotation labels by defining process steps,
human activities and simple human movements in order picking
scenarios. An attribute representation based on simple human
movements meets the challenges set by the versatility of activities
in warehousing.

I. INTRODUCTION

O
RDER picking is the process of pulling items from a

warehouse to satisfy specific customer orders. This basic

warehousing process makes up more than half of the total

operating expenses [1, p.1-30]. Sub-processes may be partially

automatized in high-wage countries. Nevertheless, manual

order picking systems remain dominant in practice [2]. To

evaluate order picking systems, manual processes need to be

quantitatively determinable [3]. Manual assessment of the or-

der picking efficiency is unfeasible as trained specialists would

be required to manually gather the necessary information in a

highly versatile environment. Due to advancements in sensor

technology and data processing, IT-supported approaches of

Human Activity Recognition (HAR) gain significance.

HAR is a classification task where time-series segments

are assigned to a specific activity class [4], [5], [6]. The

authors in [5] provided the first approach of HAR in the order

picking process. They recorded multichannel time-series from

Inertial Measurement Units (IMUs). IMUs were attached to

both arms and the torso of three workers in two warehouses.

IMUs provide measurements of three different sensors: ac-

celerometers, gyroscopes and magnetometers for three axes

(x, y, z). The authors followed a standard pipeline in pattern

recognition; that is, segmenting sequences, extracting hand-

crafted features, and training a classifier. They used a sliding

window approach for segmenting time-series segments. For

each of these segments, statistical features were computed and

processed by three classifiers. Recently, deep convolutional

neural networks (CNN) and recurrent neural networks (RNNs)
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were successfully used for recognizing human activities [6],

[7], [8], [9]. A combination of convolutional layers and

recurrent units is proposed in [7] for recognizing activities of

daily life. In [8], different deep architectures were deployed

to recognize human locomotion activities. In particular, they

used a CNN, a long-short term memory (LSTM) network, and

a bi-directional LSTM network. The authors in [6] proposed a

CNN for solving HAR in the order picking process. In contrast

to previous architectures, this CNN contains parallel branches.

Each of these branches is composed of two or three convolu-

tional layers and max-pooling operations processing segments

per IMU. This architecture, called IMU-CNN, showed the

state-of-the-art performance in HAR.

The success of deep architectures in different tasks heavily

depends on the amount of data. Nowadays, large collections

of data are available for tasks such as image classification,

image segmentation and face recognition. However, this is not

the case for HAR, which datasets are rather small and scarce.

Providing data collections involves recording high quality raw

data along with their respective class annotations. Data should

be large, variate and correctly labeled. This process in HAR is

more challenging in comparison with other tasks. For image

classification datasets, label annotations can be carried out

using a combination of unsupervised clustering and manual

work [10]. However, HAR is diverse involving different type

of data sources, e.g. from videos, or multichannel time-series

from on-body sensors. HAR faces challenges with regards to

environment settings, number of participants and number of

sensors [4]. Furthermore, due to the large intra- and inter-class

variability of the human movements, a large number of exper-

iments must be carried out, which draw motion repetitions

from the same or different persons [7]. These circumstances

increase the data collection and annotation efforts. Obtaining

and annotating data from videos is computational expensive,

and, in the case of multichannel time-series signals, signals

are visually hard to interpret. In both cases, annotations are

carried out manually, involving the synchronization of the

time-series with videos, observing the actions and labeling the

sequences. This procedure takes enormous time. For example,

annotations of time-series in the order picking dataset in

[11] demanded 26min in average per minute of annotated

data. In addition, annotations are inconsistent among different
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Fig. 1: Framework for semi-automated Annotation

annotators. Repetitions in the annotation process enhance the

data quality [11], but escalate the data collection effort.

Apart from the annotation effort, the definition of activities

is of high interest. In order picking scenarios, coarse activities

like walking, picking and searching are often used [6], [11].

However, these scenarios are highly versatile involving a

variety of activities. A possible way out is the definition of

more finely subdivided activities. This implies more effort

for creation and annotation of datasets. Following [9], activ-

ities could be represented by a set of attributes. Attributes

are high level semantic descriptions of activities [12], [13].

These attributes are shared among all of the activities. For

example, attributes like moving or not moving a foot and the

velocity could define walking, running, and standing. Using

an attribute based representation, problems like imbalanced

data and overfitting are reduced. Sequential data from the

most frequent activities could be used for learning attributes

that are shared with less frequent activities, as simple human

movements are shared among activities. In general, attribute

annotations in the context of multichannel time-series HAR are

not available. The annotations are related with specific coarse

activities, for example standing or walking. However, there are

no annotations of attributes describing those coarse activities.

In [9], attribute representations for HAR are learned using an

evolutionary algorithm, starting from a random combination

of attributes. The learned attribute representations are suitable

for solving HAR as classification task. However, their semantic

interpretation is missing and therefore not understandable by

humans.

II. METHOD

Datasets consisting of multichannel time-series from on-

body sensors are of special interest in order picking. Usually,

multiple sensors, e.g. IMUs, are worn by a worker gathering

recordings in a simple and non-invasive manner. Besides,

these sensors are impersonal, i.e. recordings do not portray

the identity of the person. In comparison with HAR using

videos, they do not suffer from occlusion, as the person’s

visibility changes along videos. In addition, IMUs are rather

economic. Nevertheless, datasets from these devices are hard

to annotate manually. As they are difficult to interpret by

a human, additional video material is necessary to visualize

the respective activity. This paper presents a framework, see

Figure 1, to annotate multichannel time-series from on-body

sensors using a deep learning model that is trained on highly

accurate data. This framework is divided in three parts. First,

sequential high quality data are created and annotated from

a controlled environment as a reference dataset. Humans are

recorded following activities that are commonly seen in order

picking scenarios. Proper annotation labels are defined and,

in addition, an attribute representation for human activities

is introduced. This attribute representation is based on basic

human activities and warehousing components. A deep model

for solving HAR is learned on the reference dataset. Second,

using this model, sequential data from an uncontrolled envi-

ronment are initially labeled. This initial label includes the

computation of uncertainty for the initial predictions. Third,

uncertain predictions are revised by human work for final

labeling.

A. Controlled Environment

On the one hand, naturalistic, real-life data are desired. On

the other hand, data is prune to be disturbed in uncontrolled

environments [14]. The primary reason to use a controlled

environment set-up is the high accuracy of the available

sensors. Interfering signals can be averted, and recording

sessions can be conducted and repeated with different settings.

The Motion Capturing (MoCap) that has been used for this

paper is based on photogrammetry methods for measuring

object positions on 2D and 3D spaces using a string of

cameras. As an installation of the motion capturing system

in a real warehouse is not practicable, it is located at the

"InnovationLab Hybrid Services in Logistics" of the chair

of materials handling and warehousing at the TU Dortmund

University. The MoCap system consists of 38 cameras that

cover a space of approximately 22m × 10m × 6m. It uses

passive markers to track rigid and flexible objects, such as

drones, robots or humans in real time [15]. The passive

markers reflect incoming infrared signals to the cameras, and

their 3D positions are determined via triangulation.

The purpose of the MoCap system is to construct and

record skeleton data from workers performing activities in an
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Fig. 2: Exemplary Activities and Motion Capture Data Skeleton

order picking scenario, as shown in Figure 2. Workers wear

a specific suit with a set of passive markers. The MoCap

computes the global 3D positions and it constructs a human

skeleton. The MoCap System provides global poses from

different parts of the human body, e.g. head, torso, arms and

feet. A pose is a combination of position and angular values

in [X,Y, Z] of a certain reference system.

B. Annotation of Order Picking Activities

From a macro-level perspective, the human activity in order

picking systems can be segregated into basic activities such as

locomotion, retrieving and confirming [1, p.1-30]. An obvious

approach of HAR would be to interpret each activity as

a class. However, this approach is incapable to deal with

the versatility of actions in real-world systems. Members of

the same class differ significantly in terms of motions and

tasks that are executed by the pickers [3]. For example, a

warehouse employee can simply walk or walk while carrying

a box. A single class cannot account for such distinctions.

There is a wide variety of components that influence the

human activity, ranging from the type of storage and collecting

unit to the information technology [1, p.1-30], [16], [17].

These components and their combinations define coarse order

picking process steps, e.g. putting a box from a shelf onto a

cart. However, process steps can be composed of fine human

activities such as taking a box from a shelf and putting a

box onto a cart. Thus, each relevant process step needs to be

defined with regards to human activities. This approach offers

a high degree of flexibility. On the one hand, the definition of

each human activity is fixed so that patterns in the sensor

can be recognized and the obtained data is reusable. This

is feasible as the definition of human activity is supposed

to hold global validity irrespective of a specific context and

environment. On the other hand, the definition of process steps

is not fixed. Depending on the user’s requirements, process

steps can be defined very specifically or in more general terms.

In addition, following [9], human activities are represented

by a set of attributes that describe them semantically. These

attributes are simple human movements, for example moving

an arm or a foot. As shown in [9], attribute representations

boost HAR tasks using deep architectures.

The proposal is to annotate time-series with a respective

activity and a set of attributes, see Figure 3. The definition

of both the activities and the attributes must be created a

priori by a warehousing specialist to ensure that they are

semantically understandable. The attributes are the output of

the CNN that operates on the sensor data. The combination of

attributes implies a specific activity. The activity sequence is

then comprehended as a process step of order picking.

C. Creation of Reference Dataset

A reference dataset for order picking scenarios using the

MoCap system, see subsection II-A, is created. The closeness

to reality within the controlled laboratory environment was

ensured by using the same kind of equipment, such as boxes

or racks, that are used in real warehouses.

For this reference dataset, eight activities have been

recorded: Standing (none), Walking (none), Standing (box),

Walking (box), Reaching forward (none), Lifting (box), Putting

down (box), Straighten up (none). Here, the words box and

none express whether a worker walks with or without a box.

Thus, the sequence of reaching forward (none) and lifting

(box) implies the process step picking up a box. The box was

a standard small load carrier with the dimensions L 600 mm

x W 400 mm x H 220 mm and a gross weight of 4 kg.

The sample recording for this paper was conducted with

eight participants of which four have been female and four

male. Their height ranged from 161 to 192 cm and the average

age was 25. Five participants have been right-handed and three

participants have been left-handed. Previous research suggests

that the handedness and gender have an impact on the motion

[18]. The amount eight participants is equivalent to state-of-

the-art approaches [19].

The activities were not recorded in a sequence and subse-

quently segregated into activities. Rather, they were recorded

successively as modular units to ensure the creation of a bal-

anced dataset; that means, all activities have a similar number

of recordings regardless of their occurrence in a given scenario.

All standing and walking activities have been recorded for five

minutes per participant in 5 individual recordings of 60sec

each. Both the activities Reaching forward (none) and lifting

(box) were recorded in a single run to reduce the recording

effort. The box was picked 10 times from 9 different heights,

from the ground level up to a stock of 8 boxes. The participants

approached the stack from different starting positions to ensure

a natural motion. The boxes had to be lifted with both hands.
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Fig. 3: Attribute based representation of a process step composed of activities that are semantically described

Apart from that, no instructions were given. The total amount

of 90 recordings was likewise recorded for the activities put

down (box) and straighten up (none). A testing data set of

60 sec were recorded for each participant. In the testing data

set, the participant conducts a sequence of the previously

classified and annotated activities in an arbitrary order and

duration. This data set is manually annotated. 202 recordings

were conducted with eight participants each, resulting in a

total of 1616 recordings. As the data set is based on skeleton

poses, one can visualize them easily for annotation purposes.

The annotation of walking and standing data sets is simple, as

there is no alteration of neither the attributes nor the activity

over time. The activities that included the stacked boxes

contained not only the two activities Reaching forward (none)

and lifting (box), as well as put down (box) and straighten

up (none). The stack was approached and departed by the

participants by feet. Therefore, the two walking activities and

the two standing activities were annotated as well. Having

this modular recording from activities, the annotation took

approximately 2.5min per recorded minute.

D. Convolutional Neural Networks for HAR based on Skeleton

Datasets

This paper uses the deep architectures, proposed in [6], [9].

These architectures are suitable for multichannel time-series.

They are composed of temporal-convolutions and pooling lay-

ers, which perform convolution and downsampling operations

along the time axis. These architectures extract hierarchical-

temporal relations of human movements creating abstract

representations of an input sequence. Fully-connected layers

connect these representations creating a global one of the input

data. The network will compute an attribute representation

of an input sequence. This representation is a vector a ∈ B

containing 1s and 0s in which 1 for having or not an attribute,

the sigmoid activation function is applied to each element of

the output layer. Its output corresponds to pseudo-probabilities

for each attribute ai being present in the representation.

The architecture was designed for handling sequences from

multichannel time-series, which are measured from m indi-

vidual portable-devices. These devices are located on different

parts of the human body. Convolutional and pooling layers are

configured in parallel branches for processing these sequences.

Specifically, a single branch processes sequences from a single

device increasing the descriptiveness. This architecture is

called CNN-IMU. Besides, this configuration allows for more

robustness against different and asynchronous devices. This

architecture contains m convolutional branches, one per de-

vice. Each branch is composed of four temporal-convolution,

two max-pooling layers and a fully-connected layer.

Different from [6], [9], the input sequences are not mea-

surements from any portable sensor located on human body

parts. Sequences are provided from the MoCap System, see

subsection II-A, which provide global poses of human seg-

ments. Then, for each of these segments, one has six different

measurements. There are in total 22 human segments, e.g.

the head, torso, feet, knees and arms. In total, 134 channels

have been taken into account. The global pose sequences are

normalized with respect to the lower back human-segment.

This is necessary to avoid a dependency of the human activity

recognition to a global position of warehousing equipment

in the laboratory. Each of this measurements is taken as

a channel, similar to sequences from portable devices. One

considers in total 132 channels and m = 22 branches. In the

CNN-IMU, convolutions are computed along the time axis,

and their filters are shared among the channels.

For training, the following configurations are employed.

Sequences from persons 1 − 6, person 7 and person 8 are

used as training, validation and testing sets respectively. The

parameters of the networks are updated by minimizing the

binary-cross entropy loss using the stochastic gradient descent

with the RMSProp update rule as in [7], [9]. Sequence

segments, extracted using a sliding window approach, are

fed to the networks. These segments are assigned the most

frequent ground truth. In general, learning rates are decreased

by γ = 0.1 at a certain epoch or iteration during training.

Additionally, we use dropout with probability of 50% on

the inputs of the first and second fully-connected layer, and

orthogonal initialization [7]. As suggested in [6], [7], input

sequences were normalized per channel to a range [0, 1].
Moreover, a Gaussian noise of µ = 0 and σ = 0.01 is
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added, simulating inaccuracies on the MoCap System. For a

given attribute representation A describing the aforementioned

activities in the reference dataset, a nearest neighbour approach

is used for predicting a specific activity by measuring the

cosine distance from the CNN’s output for a certain input

sequence ã to the set a ∈ A. Different sets A of attribute

representations, provided by experts, will be evaluated.

E. Human Validation

Following a sliding window approach with a window size

of T and step of s, an unlabeled sequence from the reference

dataset and an unlabeled sequence from IMU’s measurements

are segmented. A set of D sequences of size T are then

obtained. These sequences are fed to the CNN-IMU computing

their attribute representations. By means of a nearest neighbor,

these sequences are assigned to the activity where the distance

between their representations is minimal. Following [20],

an uncertainty measure can be computed for each of the

predictions. This measure give a value of how certain a CNN

is with respect to a prediction. Uncertain predictions are then

revised by experts for generating the final annotation of the

sequence.

III. DISCUSSION AND CONCLUSION

This contribution proposed a framework to reduce the

annotation effort for multichannel time-series. An attribute

based representation creates a high-level semantic description

of activities. This is beneficial to make full use of imbalanced

data, avoid overfitting and to recognize unseen activities. The

logical connection of activities and process steps has been

explained and an exemplary attribute representation has been

provided. Motion Capture datasets of eight activities including

a training and validation data set have been recorded with eight

participants each, resulting in a total 1616 recordings. The

recordings have been annotated, normalized and used to train

a state-of-the-art CNN. Recording further participants and the

manual annotation of the MoCap data requires few manual

effort. The attributes used by the CNN can be understood by

a human and thus transferred to new activities.

Based on the proposed framework, a large multichannel time

series can be annotated with respect to semantics in a semi-

automated manner. It is not restricted to IMU data but can be

used for other sources, such as video data, as well.
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