
Neuron Pruning for Compressing Deep
Networks Using Maxout Architectures

Fernando Moya Rueda(B), Rene Grzeszick, and Gernot A. Fink

Department of Computer Science, TU Dortmund University, Dortmund, Germany
fernando.moya@tu-dortmund.de

Abstract. This paper presents an efficient and robust approach for
reducing the size of deep neural networks by pruning entire neurons.
It exploits maxout units for combining neurons into more complex con-
vex functions and it makes use of a local relevance measurement that
ranks neurons according to their activation on the training set for prun-
ing them. Additionally, a parameter reduction comparison between neu-
ron and weight pruning is shown. It will be empirically shown that the
proposed neuron pruning reduces the number of parameters dramati-
cally. The evaluation is performed on two tasks, the MNIST handwritten
digit recognition and the LFW face verification, using a LeNet-5 and a
VGG16 network architecture. The network size is reduced by up to 74%
and 61%, respectively, without affecting the network’s performance. The
main advantage of neuron pruning is its direct influence on the size of the
network architecture. Furthermore, it will be shown that neuron pruning
can be combined with subsequent weight pruning, reducing the size of
the LeNet-5 and VGG16 up to 92% and 80% respectively.

1 Introduction

Having today available a big number of large-scale datasets and powerful GPUs,
deep neural networks have become the state-of-the-art in many computer vision,
and speech recognition tasks [1,6,10]. They achieve high performance in many
applications, e.g., scene and object recognition, object detection, scene parsing,
face recognition, and medical imaging. However, they utilize high computational
resources coming along with high memory cost [13]. For example, AlexNet and
DeepFace have around 60M and 120M parameters, respectively [7]. Furthermore,
they consume significant energy making their application on embedded devices
difficult [7]. Containing a huge amount of parameters, deep neural networks may
also be subject to over-parametrization. Thus, there could exist redundancies,
and their generalization is not proper [12]. In general, networks with a small
number of parameters generalize better extracting the important information
of the data, rather than over-parametrized networks. Nevertheless, smaller net-
works are harder to train, since they are sensible to initialization [13].

Designing a network, i.e., setting the number of layers, neurons per layer, and
parameters is typically still a “trial and error” process. Mostly, it depends on

c© Springer International Publishing AG 2017
V. Roth and T. Vetter (Eds.): GCPR 2017, LNCS 10496, pp. 177–188, 2017.
DOI: 10.1007/978-3-319-66709-6 15



178 F. Moya Rueda et al.

experience [1]. Moreover, training does not affect the structure of the network [8].
Several attempts have been developed for reducing the effect of the huge number
of parameters, e.g., dropout [10], creating an optimal-sized network by adding
additional regularizers, or pruning the network parameters [1,12,17]. The latter
ones attempt to either remove edges or complete neurons from a network. How-
ever, most of these approaches require an expensive comparison of all neurons in
the network or additional and expensive post-processing, e.g., the computation
of the network’s Hessian.

We propose an efficient and robust method for neuron pruning based on a
local decision for reducing the number of parameters in a deep neural network.
We will empirically show that pruning neurons rather than weights is essential
for reducing the size of a neural network at runtime. The proposed approach for
pruning neurons is based on the good performance of maxout units [5], which
were developed for boosting the impact of dropout in training, and on their
capacity to combine neurons for approximating more complex functions. It is
assumed that redundancies typically exist in a neural network, so they also exist
in a maxout unit, which combines the output of multiple neurons. Thus, pruning
can be performed in a very local approach based on a single maxout unit.

The remainder of the paper is structured as follows: Sect. 2 will discuss the
related work in the field of parameter pruning for deep networks. In Sects. 3 and
4, the maxout approach will be reviewed and an approach for pruning neurons
will be introduced. Experiments on two datasets, the MNIST digits dataset and
the labeled faces in the wild dataset, will be shown in Sect. 5. Face recognition
has been chosen as an application that is of special interest for embedded devices
such as smartphones. The last section presents a short conclusion.

2 Related Work

Though deep neural networks are very powerful, they are known to be over-
parametrized, possessing millions of parameters [13]. This over-parametrization
may cause performance deficits, e.g., poor generalization, overfitting, slow test-
ing time, and enormous energy and memory consumption [3,7,8,12]. Therefore,
reducing the size of the network by removing unimportant parameters, or design-
ing optimal-sized networks becomes imperative. For those purposes, different
attempts have been developed. These attempts can be grouped in constructive
and destructive methods.

In constructive methods, neurons or layers are added to a trained shallow
neural network. For example, in [17] a very deep convolutional neural network
(CNN) is trained by continuously adding convolutional layers to an initial CNN
of 11 layers for obtaining a better performance. However, the initial shallow
networks must be properly trained, as the network can otherwise get stuck into
a local optimum. Moreover, as the idea is to improve the network’s performance
by adding layers and neurons, the network’s size increases, and redundancies
could be introduced into the network.

In destructive methods, non-relevant neurons (neuron pruning) and/or para-
meters (weights pruning) of an initial deep neural network are removed, while



Neuron Pruning for Compressing Deep Networks Using Maxout Architectures 179

maintaining its behaviour. The authors in [12,14] started the concept of pruning
neural networks, both using a sort of relevance measure. In [12], parameters, with
the smallest relevance in the network, which is computed by using the Hessian
of the loss function, are deleted. In [14], complete neurons are deleted by using
a relevance measurement based on the difference of the network’s performance
with and without the neuron. Nevertheless, especially with today’s very deep
neural networks with millions of parameters, computing the relevance of each
neuron or parameter demands very high computational resources.

Different from the relevance measure methods, the authors in [7,8] prune
weights by thresholding them. Afterwards, the network is re-trained for com-
pensating the lost connections. One of the most prominent destructive meth-
ods is Deep Compression [7]. The authors reduced the storage required for a
deep CNN by a factor of 35 and 49. They used a combination of three steps:
weight pruning, weight quantization and Huffman coding. First, weight prun-
ing is applied by thresholding the weights and thus setting them to zero. The
remaining weights are then quantized, which reduces the number of bits for rep-
resenting weights. Finally, a Huffman coding is applied. However, the networks
are currently de-compressed for inference.

Recently, the authors in [1] determined the best number of parameters, by
using a regularizer while training the network. The regularizer forces all the
weights of single neurons to be zero. For testing, these dead neurons are removed
from the network. Nevertheless, additional hyper-parameters must be deter-
mined for the regularization. The authors in [3] reduced the number of para-
meters to be learned by factorizing the weight matrices as a low rank product
of two matrices: a static, and a dynamic matrix. First, they trained the static
matrices as a general dictionary, obtaining a prior knowledge of the smoothness
structures that are expected to be seen. Second, they fine-tuned the dynamic
matrix, which are the weights to be learned.

Comparing the approaches, the destructive methods are more popular than
the constructive ones as the networks are often easier to train. Good compres-
sion results are achieved by the deep compression approach in [7]. However,
pruning weights has the disadvantage of rarely removing neurons from the net-
work architecture. To make this clear, we show in Fig. 1 the relation between the
proportion of remaining neurons in the network versus the proportion of pruned
weights using the LeNet-5 [11] and the VGG16 [16] as examples. It clearly shows
that neurons only get pruned at a very high compression ratio, which typically
influences the networks performance. Thus, thresholding parameters allows for
compressing a network but does not influence the size of the architecture. At
runtime a sparse matrix library would be required, which efficiently evaluates
the compressed network. Otherwise, the network must be de-compressed for
inference. The zeroed weights are again stored in the memory, as in [7], which
generates a waste in memory consumption as well as computational power.



180 F. Moya Rueda et al.

(a) LeNet-5 (b) VGG16

Fig. 1. Percentage neurons remaining in network vs percentage of pruned weights for
a LeNet-5 trained for digit recognition and for a VGG16 trained for face recognition
(for details see Sect. 5).

3 Fundamentals

The proposed approach builds on a maxout architecture [5] for pruning the
neural networks in a destructive manner. A maxout layer can be considered
as a cross-channel pooling operation, performing a max operation between k
adjacent neurons. These layers were designed to boost the model’s averaging
ability of dropout [10], thought for preventing overfitting, and to improve the
optimization. Given an input layer X = [x0, x1, x2, . . . , xN ] with N neurons, a
maxout layer computes:

h(X) = max[xjk+0, xjk+1, xjk+2, . . . , xjk+(k−1)] ∀j ∈ [0, N/k − 1], (1)

where k is the number of neurons that are combined into a single maxout unit.
As the authors in [5] show, a maxout unit is a universal approximator. It

combines k single neurons implementing a piecewiese linear function that can
approximate arbitrary convex functions. So, in theory, the maximum of several
neurons is able to approximate a more complex neuron. Moreover, the maxout
unit becomes a sort of an activation function, replacing other activation func-
tions, but with a factor of k smaller number of parameters. For example, two
linear functions can implement a ReLU function, or five different linear functions
can implement an approximation of a quadratic one, as shown in [5].

4 Compressing Networks with Maxout Architectures

The idea of the proposed approach is to use the maxout units and their model
selection abilities for pruning entire neurons from an architecture without expen-
sive processing. Thus, reducing the size and the memory consumption of a deep
network. In some cases, the performance of the network may even increase as
redundancies get reduced or eliminated.



Neuron Pruning for Compressing Deep Networks Using Maxout Architectures 181

Following the assumption that redundancies exist in a deep neural network,
it is assumed that if a network contains a maxout layer, redundancies will,
also, exist in the maxout units. This is a valid assumption, since dropout and
other regularization approaches cause the learn process to create different paths
through the deep network, which yield similar outputs [5]. Using this premise, a
reduction of the number of neurons in a maxout layer can be done without an
expensive relevance measurement.

4.1 Neuron Pruning

For reducing the size of a CNN using maxout units, an iterative process is fol-
lowed. First, a CNN with a maxout layer is trained. This maxout layer performs
a max function among k adjacent neurons, reducing the amount of weights con-
necting with the next layer by a factor of k. So, placing this maxout layer after
the one with the highest number of weights would be advisable. Second, by
counting the number of times neurons become the maximal value in each max-
out unit when computing a forward pass over the training dataset, the least
active neurons of each maxout unit are removed from the network. Their effects
are negligible with respect to other neurons. Third, the remaining neurons of the
CNN are re-trained. After re-training, the process is repeated; in this case, the
maxout layer performs a max function among k−1 neurons, and so on. Figure 2
shows an example for k = 4.

In comparison with [14], pruning neurons takes place locally, since relevance
values are not computed depending on the network’s output for each single
neuron. The pruning in maxout architectures is therefore more feasible for very
large networks with millions of parameters.

4.2 Weight Pruning

Having reduced the number of parameters in the network by pruning neurons
from the maxout units of the network, further compression operations can be
performed. Following the approach in [7,8], connections (weights) can be pruned
in an additional processing step. Based on thresholding, edges with lower value
than a threshold are set to zero. Thus, learning which connections are impor-
tant and deleting the unimportant ones. By this weight pruning, the network

x0
0

x0
1

x0
2

x0
3

No pruning

Max unit

Remove least
active neuron

i.e.,x0
2

→ re-train

x1
0

x1
1

x1
3

Iteration 1

Max unit

Remove least
active neuron

i.e.,x1
1

→ re-train

x2
1

x2
3

Iteration 2

Max unit

Remove least
active neuron

i.e.,x2
3

→ re-train

x3
1

Iteration 4

Fig. 2. Neuron pruning process for k = 4 inputs per maxout unit. xb
a represents a

neuron with ‘a’ the neuron index and ‘b’ the iteration.



182 F. Moya Rueda et al.

becomes a sparse network. For pruning weights, a three-step procedure is fol-
lowed, as proposed in [7,8]. Given the network that has been compressed by
the proposed neuron pruning, the important connections are learned based on
a global threshold. The threshold can be set such that as many connections as
possible are removed without deteriorating the performance on a validation set.
Second, weights below this threshold are deleted; that is, weights are set to zero.
Third, the network is re-trained, learning the final weights.

5 Evaluation

An evaluation of both neuron and weight pruning is carried out for two different
tasks: handwritten digit recognition, MNIST dataset [11], and face verification,
LFW dataset [9]. The later is of special interest for embedded domains, e.g., in
mobile phones. In general, the performance of the networks is evaluated with
a varying percentage of pruned weights: after applying maxout, when pruning
several neurons from the maxout units, and finally after applying additional
weight pruning. While in the first task a very small LeNet-5 architecture is
compressed, in the second task a large VGG16 architecture is compressed.

For the experiments, we chose k = 4 for the size of the maxout units as
it allows for a fairly good compression and does not reduce the descriptiveness
of the network compared to a network without maxout units. The neurons are
then iteratively pruned from the maxout units and the network is re-trained
after each pruning step.

5.1 Handwritten Digit Recognition

For the digit-recognition task, two networks, using the LeNet-5 architecture [11]
with two convolutional layers, a fully connected layer and a softmax layer as a
classificator, were trained. One network contains a maxout layer after the fully
connected layer (LeNet-MFC), while the other has a maxout layer after the
last convolutional layer (LeNet-MC). An iterative training following the steps
in Sect. 4.1 is executed using the MNIST dataset [11]. This dataset consists of
60000 handwritten-digit images (of size [28 × 28]) for training and 10000 images
for testing. We used stochastic gradient descent (SGD) with a momentum of
0.9, weight decay of 5 × 10−4 with inverse decay, a base learning rate of 0.01
that is iteratively reduced and a batch size of 64 for training. The networks were
trained for 10000 iterations.

Table 1 shows the classification accuracy for both networks with different
fully connected layer sizes, with and without maxout (after the fully connected
layer or the last convolutional layer). Pruning of one up to three neurons is eval-
uated. It shows also the percentage of pruned weights which do not remain in the
network’s architecture, denoted by p.w.%. In general, for both networks when
using maxout and pruning neurons, the accuracy is maintained. The slight devi-
ations of the accuracies of both networks with respect to the original networks



Neuron Pruning for Compressing Deep Networks Using Maxout Architectures 183

Table 1. Accuracies in [%] and pruned weight’s proportions (p.w.%) in [%] for LeNet-
5 with Maxout layer (k = 4) after last fully connected layer (LeNet-MFC) and last
convolutional layer (LeNet-MC).

Network No maxout No prun 1 neuron prun. 2 neuron prun. 3 neuron prun.

Type FC size Acc% Acc% p.w.% Acc% p.w.% Acc% p.w.% Acc% p.w.%

LeNet-MFC 128 98.1 99.1 0.74 99.1 22.6 99.1 40.4 99.1 60.2

256 98.3 99.2 0.82 99.2 22.8 99.2 44.8 99.0 66.8

512 99.1 99.2 0.87 99.2 24.1 99.2 47.4 99.1 70.7

LeNet-MC 128 98.1 99.2 59.4 99.2 64.2 99.2 69.1 99.0 73.9

256 98.3 99.0 65.9 99.2 68.6 99.3 71.3 99.0 73.9

512 99.1 99.2 69.7 99.3 71.1 99.3 72.6 99.3 74.0

are not significant based on a randomization test [15]. Moreover, the number of
weights are considerably reduced with up to 70% for LeNet-MFC and 74% for
LeNet-MC. However, this reduction changes with respect to the position of the
maxout layer. In LeNet-MFC, each neuron pruning step reduces the number of
weights by 19.8%, because the neurons are pruned from the fully connected layer,
which has the largest number of weights in the network. Besides, the maxout
layer does not provide a considerable reduction, since it reduces the size of the
softmax layer that has less number of weights compared with the other layers. In
contrast, the weight reduction in LeNet-MC due to neuron pruning is just 1.4%
per step, and it comes mostly from the maxout layer. In this case, the maxout
layer reduces the fully connected layer instead, and the neurons are pruned from
the last convolutional layer. However, in the last convolutional layer the number
of weights is negligible.

Following the neuron pruning, additional weight pruning, as discussed in
Sect. 4.2, can be applied. As mentioned in [8], neurons could also be pruned
from the network if all their input weights are zero; that is, the neuron can be
considered as dead. So, the number of neurons, and thus the number of weights,
could be considerably reduced if a proper threshold is used. Nevertheless, ana-
lyzing the proportion of dead neurons versus the proportion of pruned weights,
neurons do not become dead before pruning more than 98% of the weights,
see Fig. 1(b). Consequently, weight pruning rarely prunes neurons. Thus, zeroed
weights remain in the network as part of the neurons and the network’s architec-
ture does not change so that a sparse representation would be required at runtime
[7]. However, assuming the usage of such a representation and for reducing stor-
age size of the network, additional weight pruning is applied to both networks.
As a basis, we use the networks after pruning three out of four neurons in the
maxout units. The results in Table 2 show that the accuracy will not drop if less
than 70% of the weights are thresholded. So, a total compression rate of 91%
for LeNet-MFC and 92% for LeNet-MC, of pruned and zeroed weights, can be
reached.



184 F. Moya Rueda et al.

Table 2. Accuracies in [%] for both networks, after pruning three neurons out of four,
under different proportions of pruned weights.

Network Proportions in [%] of pruned weights

Type FC size 0 10 30 50 60 70 80 90 98

LeNet-MFC 128 99.0 99.0 99.0 99.0 99.0 99.0 98.9 98.3 82.1

256 99.3 99.3 99.3 99.3 99.3 99.2 99.2 98.9 91.0

512 99.3 99.3 99.3 99.3 99.3 99.3 99.2 99.1 92.2

LeNet-MC 128 99.2 99.2 99.2 99.2 99.1 99.1 98.9 97.8 26.5

256 99.3 99.3 99.3 99.2 99.2 99.1 98.9 96.3 55.3

512 99.2 99.2 99.2 99.2 99.2 99.2 99.0 97.4 60.8

5.2 Face Verification

The neuron pruning was also carried out for a larger network for the purpose of
face verification. The task is to verify whether two face-images portray the same
person or not. For that purpose, the VGG16 network [16] was utilized, using The
Visual Geometry Group Face Dataset (VGG face-dataset) as a training-dataset.
This dataset is a large collection of face-images containing 2.6 million face-images
from 2622 identities. It does not contain overlapping identities with standard
benchmark datasets (LFW, YFT), so it is suitable for training. The VGG16
network, configuration D in [16], is a deep CNN with 16 layers: 13 convolutional
layer, two fully connected layers, and a softmax layer. Analogous to the previous
LeNet configurations, two configuration of VGG16 are used, in which a maxout
network with k = 4 is added after the first fully connected layer (fc6), called
VGG16-MFC, and after the last convolutional layer (conv 5), called VGG16-
MC, see Fig. 3. The positions of the maxout layers are set after the layers with
the most quantity of weights. Since, the connections between conv 5 and fc6
have 70.1% of the total amount of weights in the network and the connections
between fc6 and fc7 have an additional 11.6% of the network’s weights. The
last three fully connected layers were fined-tuned for both networks. In the case
of VGG16-MC, the conv 5 was also fine-tuned. We used SGD with a momentum
of 0.9, weight decay of 5 × 10−4, three learning rates [10−2, 10−3, 10−4], as [16],
and a batch size of 128.

The network was tested following the procedure in [16], but using the
restricted configuration of The Labeled Faces in the Wild (LFW) [9]. The LFW
dataset is a standard benchmark dataset for face verification. It contains 13233
face-images from 5749 identities extracted from the Internet. Faces in images
were detected using the Viola-Jones face detector [9]. Faces are roughly cen-
tered, contain lesser noise but larger bounding-box than the ones in the VGG
dataset. Besides, the Bray-Curtis distance (BC; [2]) was used instead of the
Euclidean distance. Since, the BC distance works better for high-dimensional
vectors in comparison with the Euclidean and the L1 distances [18]. The BC
distance was measured between the descriptors of two face-images from a set



Neuron Pruning for Compressing Deep Networks Using Maxout Architectures 185

conv5 3
p.w.1.62%

512

max
pooling

dense

fc6
p.w.70.1%

4096
maxout units

4096/k

dense

fc7
p.w.11.6%

4096

conv5 2
p.w.1.62%

512

convs

conv5 3
p.w.1.62%

512

max
pooling

maxout units
4096/k

dense

fc6
p.w.70.1%

4096

Fig. 3. Comparison of two architectural approaches for placing the maxout units: (left)
VGG16-MFC, (right) VGG16-MC. The weight proportions p.w.% per layer are also
shown.

Table 3. EER in [%] and pruned weight’s proportions for the VGG16 with maxout
layer (k = 4) after the first fully connected layer (VGG16-MFC) and after the last
convolutional layer (VGG16-MC).

Network No maxout No prun 1 neuron prun. 2 neuron prun. 3 neuron prun.

Type EER% EER% p.w.% EER% p.w.% EER% p.w.% EER% p.w.%

VGG16-MFC 3.7 3.33 8.68 2.83 26.39 2.76 44.11 2.66 61.82

VGG16-MC 3.7 3.7 53.15 3.36 53.56 3.36 53.96 3.23 54.37

of 3000 matched and 3000 non-matched pairs of images. Different from [10,16],
the feature vectors from the crops of the image’s corners were not utilized for
computing the final descriptor, but only the crops from the image’s centers. If
the BC distance is smaller than a threshold, then the two images portray the
same identity. The Equal Error Rate (EER) [4,16] was used as the metric, which
is defined as the value where the False Acceptance Rate (FAR), and the False
Rejection Rate (FRR) are equal.

Table 3 shows the EER for networks without a maxout layer and with a
maxout layer with k = 4, as well as the results for pruning from one up to
three neurons from each maxout unit. Similar to the previous results, neurons
are pruned, and consequently weights are reduced, from the networks without
affecting their performance negatively. In fact, the EER decreases by 1% and
0.47% for the VGG16-MFC and the VGG16-MC respectively. It is assumed that
this improvement is produced by the elimination of redundancies in the maxout
units. Based on a randomization test, the improvement in the VGG16-MFC is
highly significant with p = 0.0026 [15].

The weight reduction changes depending on the position of the maxout layer
and on the layer where neurons are pruned in the network. In VGG16-MFC,
neurons are pruned from the largest layer in the network fc6 reducing the num-
ber of weights by 17.7% per each neuron pruning step. Moreover, the maxout
layer reduces directly the size of the second largest layer fc7. In VGG16-MC
on the contrary, neuron pruning does not affect considerably the size of the net-
work, since it reduces a small layer conv5 compared to fc6. The weight reduction
comes precisely from the maxout layer, which reduces the size of fc6. There is



186 F. Moya Rueda et al.

Table 4. EER in [%] for both VGG16 networks, after pruning three out of four neurons,
under different proportions of pruned weights.

Network Proportions in [%] of pruned weights

Type 0 10 30 50 60 70 80 90 98

VGG16-MFC 2.66 2.90 3.4 3.34 3.5 4.0 4.53 50.00 50.00

VGG16-MC 3.26 3.77 3.93 4.30 5.40 8.3 35.47 47.63 50.00

a difference of 7.45% between the weight reduction for both networks, since the
size of the layer fc7 is never changed in VGG16-MC.

Additional to neuron pruning, weights from both networks were thresholded
after pruning three out of four neurons in the maxout units with the results
shown in Table 4. The network’s performance will be, deeply, affected if more
than 50% for the VGG16-MFC and 30% for the VGG16-MC of the weights are
pruned. Nevertheless, a total compression rate of 80.1% for VGG16-MFC and
68% for VGG16-MC without performance deterioration can be reached.

6 Conclusion

We have presented an efficient approach for reducing the size of deep neural
networks. This approach prunes entire neurons and thus reduces the number of
weights in neural networks. It uses maxout units for combining k single neu-
rons into complex ones. A maxout layer reduces the number of weights between
two adjacent layers by k. By using these maxout units, the network’s perfor-
mance is not negatively affected, since they boost the dropout benefits reducing
redundancies in the network. Within these maxout units, neurons are pruned
based on a local and non-expensive relevance measure. This relevance measure
depends on the number of times neurons are maximal for each of the k adja-
cent input-neurons per maxout unit. It differs from previous relevance measures,
because it does not depend on the overall network’s performance with and with-
out individual neurons [14]. In general, this approach does not require expensive
post-processing, only a single re-training after pruning. The performance of this
reduction approach depends strongly on the position of the maxout layer in the
network. As inputs from maxout units are the neurons to be pruned, it is advis-
able to place the maxout units after the largest layer in the network, because
neurons in this layer have large numbers of weights compared with neurons in
other layers. So, pruning these neurons out of the network is favorable.

By comparing the number of pruned neurons and network’s performances
between the aforementioned approach and weight pruning, the last one does not
delete entire neurons, but rather sets weights to zero. Therefore, the architec-
ture’s size is only implicitly reduced, and the memory footprint remains equal
without a sparse representation. The proposed approach allows to reduce a net-
work’s size by 61–74% on an architectural level and without affecting the net-
work’s performance. Assuming a sparse representation, a combination of the



Neuron Pruning for Compressing Deep Networks Using Maxout Architectures 187

proposed neuron pruning with additional weight pruning allows for reducing the
size of a network by up to 92%.

Acknowledgment. This work has been supported by the German Research Foun-
dation (DFG) within project Fi799/9-1 (’Partially Supervised Learning of Models for
Visual Scene Recognition’).

References

1. Alvarez, J.M., Salzmann, M.: Learning the number of neurons in deep networks.
In: Advances in Neural Information Processing Systems, pp. 2262–2270 (2016)

2. Bray, J.R., Curtis, J.T.: An ordination of the upland forest communities of southern
wisconsin. In: Ecological monographs, vol. 27, pp. 325–349. Wiley Online Library
(1957)

3. Denil, M., Shakibi, B., Dinh, L., Ranzato, M., de Freitas, N.: Predicting parameters
in deep learning. CoRR abs/1306.0543 (2013). http://arxiv.org/abs/1306.0543

4. Giot, R., El-Abed, M., Rosenberger, C.: Fast computation of the performance eval-
uation of biometric systems: application to multibiometrics. In: Future Generation
Computer Systems, vol. 29, pp. 788–799. Elsevier (2013)

5. Goodfellow, I.J., Warde-Farley, D., Mirza, M., Courville, A.C., Bengio, Y.: Maxout
Networks. In: ICML (3), vol. 28, pp. 1319–1327 (2013)

6. Grzeszick, R., Sudholt, S., Fink, G.A.: Optimistic and pessimistic neural networks
for scene and object recognition. CoRR abs/1609.07982 (2016). http://arxiv.org/
abs/1609.07982

7. Han, S., Mao, H., Dally, W.J.: Deep compression: compressing deep neural network
with pruning, trained quantization and huffman coding. CoRR abs/1510.00149
(2015). http://arxiv.org/abs/1510.00149

8. Han, S., Pool, J., Tran, J., Dally, W.J.: Learning both weights and connections
for efficient neural networks. CoRR abs/1506.02626 (2015). http://arxiv.org/abs/
1506.02626

9. Huang, G.B., Ramesh, M., Berg, T., Learned-Miller, E.: Labeled faces in the wild:
a database for studying face recognition in unconstrained environments. Technical
Report, pp. 07–49. University of Massachusetts, Amherst, October 2007

10. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep con-
volutional neural networks. In: Advances in neural information processing systems,
pp. 1097–1105 (2012)

11. LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to
document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

12. LeCun, Y., Denker, J.S., Solla, S.A., Howard, R.E., Jackel, L.D.: Optimal brain
damage. In: Advances in Neural Information Processing Systems, vol. 2, pp. 598–
605. Morgan-Kaufmann (1989). http://papers.nips.cc/paper/250-optimal-brain-
damage.pdf

13. Liu, B., Wang, M., Foroosh, H., Tappen, M., Pensky, M.: Sparse convolutional
neural networks. In: Proceedings of the IEEE Conference on Computer Vision and
Pattern Recognition, pp. 806–814 (2015)

14. Mozer, M.C., Smolensky, P.: Skeletonization: a technique for trimming the fat from
a network via relevance assessment. In: Advances in Neural Information Processing
Systems, pp. 107–115 (1989)

http://arxiv.org/abs/1306.0543
http://arxiv.org/abs/1609.07982
http://arxiv.org/abs/1609.07982
http://arxiv.org/abs/1510.00149
http://arxiv.org/abs/1506.02626
http://arxiv.org/abs/1506.02626
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf
http://papers.nips.cc/paper/250-optimal-brain-damage.pdf


188 F. Moya Rueda et al.

15. Ojala, M., Garriga, G.C.: Permutation tests for studying classifier performance.
J. Mach. Learn. Res. 11, 1833–1863 (2010)

16. Parkhi, O.M., Vedaldi, A., Zisserman, A.: Deep face recognition. In: British
Machine Vision Conference (2015)

17. Simonyan, K., Zisserman, A.: Very Deep Convolutional Networks for Large-Scale
Image Recognition. CoRR abs/1409.1 (2014)

18. Sudholt, S., Fink, G.A.: A modified isomap approach to manifold learning in word
spotting. In: Gall, J., Gehler, P., Leibe, B. (eds.) GCPR 2015. LNCS, vol. 9358,
pp. 529–539. Springer, Cham (2015). doi:10.1007/978-3-319-24947-6 44

http://dx.doi.org/10.1007/978-3-319-24947-6_44

	Neuron Pruning for Compressing Deep Networks Using Maxout Architectures
	1 Introduction
	2 Related Work
	3 Fundamentals
	4 Compressing Networks with Maxout Architectures
	4.1 Neuron Pruning
	4.2 Weight Pruning

	5 Evaluation
	5.1 Handwritten Digit Recognition
	5.2 Face Verification

	6 Conclusion
	References


