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Abstract  

 

Introduction: The aim of safety pharmacology is early detection of compound-induced side 

effects. NMR-based urine analysis followed by multivariate data analysis (metabonomics) 

identifies efficiently differences between toxic and non-toxic compounds; but in most cases 

multiple administrations of the test compound are necessary. We tested the feasibility of 

detecting proximal tubule kidney toxicity and phospholipidosis with metabonomics 

techniques after single compound administration as an early safety pharmacology approach. 

Methods: Rats were treated orally, intravenously, inhalatively or intraperitoneally with 

different test compounds. Urine was collected at 0-8 h and 8-24 h after compound 

administration, and 1H NMR-patterns were recorded from the samples. Variation of post-

processing and feature extraction methods led to different views on the data. Support Vector 

Machines were trained on these different data sets and then aggregated as experts in an 

Ensemble. Finally, validity was monitored with a cross-validation study using a training, 

validation, and test data set. Results: Proximal tubule kidney toxicity could be predicted with 

reasonable total classification accuracy (85 %), specificity (88 %) and sensitivity (78 %). In 

comparison to alternative histological studies, results were obtained quicker, compound need 

was reduced, and very importantly fewer animals were needed. In contrast, the induction of 

phospholipidosis by the test compounds could not be predicted using NMR-based urine 

analysis or the previously published biomarker PAG. Discussion: NMR-based urine analysis 

was shown to effectively predict proximal tubule kidney toxicity after single compound 

administration in rats. Thus, this experimental design allows early detection of toxicity risks 

with relatively low amounts of compound in a reasonably short period of time.  

 

Key terms: biomarker; ensemble; kidney; metabolomics; metabonomics; methods; rat; side-

effect; support vector machine; toxicity 
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1.   Introduction 

The two main reasons for drug candidates to fail in clinics are lack of efficacy and 

unacceptable side-effects / toxicities. The actual trend in the pharmaceutical industry is to 

identify risks as early as possible – therefore different methods are under investigation. In 

addition, the number of animals needed should be reduced. The general aim of safety 

pharmacology is to identify possible side-effects from drug candidates after single compound 

administration (ICH 7A safety pharmacology guidelines; FDA, 2001).  

Metabonomic studies can be used to identify compounds with an unacceptable toxicity 

(Holmes et al., 2000; Lindon et al., 2004) or to rank compounds as early as possible according 

to their risk to induce toxicities (Robertson et al., 2000). Most studies use serum or urine 

samples after multiple treatments of rats, but studies with single compound administration 

have also been described to be successful (Holmes et al., 1998b). To our knowledge, no 

models with single compound administration and adequate sensitivity are available for routine 

testing of acute toxicities. Liver and kidney toxicity can be predicted after single compound 

administration using clinical chemistry (Pestel et al., 2006), but unfortunately sensitivity is 

relatively low (own unpublished results, see also Discussion 4.5). It was thus the aim to 

establish a NMR-based metabonomics method using urine from rats after single compound 

administration, and to validate it for selected toxicities. 

As the first model, proximal tubule kidney toxicity was chosen, since damage of the proximal 

tubule is the most often observed effect in the kidney after administration of pharmacological 

compounds, which is thought to be caused by the high compound concentration in the loop of 

Henle (Miller 2002). As the second model, phospholipidosis was chosen since it develops 

slower and histological signs are often detected very late in the compound development 

process. In both cases, earlier identification of a possible risk is desirable. For earlier detection 

of phospholipidosis cellular in vitro models (Niai et al., 2007) may be used, while in vivo 

methods, which integrate inter-organ communication, actually focus on the measurement of 

biomarkers, such as phenylacetylglycine (PAG), citrate, 2-oxoglutarate (Nicholls et al., 2000) 
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or different lipids, such as bismonoacylglycerol phosphate (BMP) (Baronas et al., 2007, 

Mortuza et al., 2003), which are critically discussed in the expert field, mostly due to the 

small databases typically used for their identification in literature. To our knowledge only 

PAG is easy to quantify from NMR spectra and is published to be predictive after single 

compound administration (Nicholls et al., 2000). Thus we tested this marker using our data 

set. 

Our general goal is to highly automate the analysis of urine derived NMR spectra. We 

therefore developed a procedure that utilizes statistical pattern recognition methods. 

Interpreting the NMR spectra as high-dimensional real-valued data, numerical classification 

with respect to the two selected toxicities was applied. We utilized Support Vector Machines 

(SVMs) (Schölkopf & Smola 2002) in order to classify the spectra as non-toxic or toxic with 

regard to certain toxicity. Aiming at a robust classification procedure we additionally 

investigated the effectiveness of classifier Ensembles. Therefore, the results from different 

experts (i.e. classifiers from varying views on the original data) were combined to get an 

overall decision regarding a putative toxicity. In order to obtain these different views, we 

varied 1) the post-processing of NMR spectra by using different normalization strategies, and 

2) the feature extraction process by using variants of Partial Least Squares (PLS) 

transformation (Wold 1966). The final Ensemble prediction was performed by majority 

voting of an automatically optimized selection of all available experts. Additionally, a final 

classification of compounds at a certain dose is realized by using the averaged results from all 

sample-wise predictions. This results in a final Ensemble model with increased classification 

performance in comparison with traditional single SVMs. 

 

2.    Methods 

2.1.   Animals 

Hannover Wistar rats CRL:WI(GIx/BRL/HAN)IGS BR were obtained from Charles River 

(Sulzfeld, Germany). They were kept on a 12 h day/night rhythm (light from 6 a.m. to 6 p.m.) 
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for 4 to 10 days prior to the experiments. Rat food (autoclaved standard rat chow from 

Provimi Kliba, Kaiseraugst, Switzerland) and water was offered ad libitum. Treatment of the 

animals followed the German Law on the Protection of Animals and was performed with 

permission of the state animal welfare committee. 

 

2.2.   Experimental design  

Rats of either sex (n=8 per dose group), weighing 180-210 g (males 8 weeks old, females 9 

weeks old) were used. The groups were treated with different compounds or vehicles either 

orally (10 mL/kg), intravenously (2 mL/kg), intraperitoneally (10 mL/kg) or inhalatively 

(administered within one minute). For intravenous or intraperitoneal administrations, 

osmolality was adjusted to 300 mosmol by adding glucose and NaCl in equal osmotically 

active amounts.  

The animals were housed in metabolic cages with free access to water. Urine was collected at 

8 h and 24 h after administration of compound or vehicle. Urine volume was determined, and 

for measurement of parameters in clinical chemistry urine was taken directly without any 

additives. For measurement of spectra with 1H NMR spectroscopy urine was buffered with a 

phosphate buffer (320 mM Na2HPO4, 80 mM NaH2PO4, 4 mM NaN3, 100 µM DSS, 9 % 

D2O; adjustment to the final pH of 7.4 with HCl) and frozen at -20°C until 1H NMR 

spectroscopy.  

 

2.3.   Clinical chemistry 

Measurements of creatinine and urea were performed using a Konelab 60i from Thermo 

Electron Corporation OY (Vantaa, Finland). The test kits were supplied by Thermo Electron 

Corporation OY, and the analyses and methodologies were used following the Konelab 

Chemistry Information Manual 12A/2003 from March 2003.  
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Creatinine concentrations were measured by a modified enzymatic rate Jaffé method (Jaffe 

1886): Creatinine formed a red colored complex in alkaline picrate solution, and the rate of 

complex formation is measured spectrophotometrically at 510 nm. 

Urea concentrations were measured by an enzymatic rate method: Urea was hydrolyzed by 

urease to ammonia and hydrogen carbonate. Glutamate dehydrogenase catalyzed the 

condensation of ammonia and 2-oxoglutarate to glutamate with the concomitant equimolar 

oxidation of NADH to NAD. The removal of NADH was measured spectrophotometrically at 

340 nm. 

 

2.4.   1H NMR spectroscopy 

The NMR measurements were performed at LipoFIT Analytic GmbH (Regensburg, 

Germany) (on a fee-for-service base) on a 600 MHz NMR spectrometer (Bruker Biospin 

GmbH, Rheinstetten, Germany) equipped with a triple resonance cryoprobe. A 1D 1H-NOE 

pulse sequence was applied using water presaturation, a relaxation delay of 1 s, a mixing time 

of 10 ms and a total pulse sequence recycle time of ~6.5 s. For every experiment 32 scans 

were recorded with 128k data points per FID and a spectral width of 20 ppm. The raw data 

(FIDs) were processed applying an exponential weighting function (line-broadening factor of 

0.3 Hz) and 256k complex data points (zero filling). The transformed spectra were referenced 

to DSS and a standardized manual phase and baseline correction was applied (TOPSPIN 1.3 

from Bruker). 

 

2.5.   Quantification of phenylacetylglycine (PAG) 

The quantification of PAG was performed by LipoFIT Analytic GmbH (on a fee-for-service 

base), and was accomplished by a specially designed algorithm for line-shape analysis. A set 

of NMR-signals characteristic for PAG was fitted by this software and peak area was 

determined by integration. The total concentration was then calculated by the use of data 

obtained by defined calibration samples of known concentration measured beforehand. 
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Possible errors due to automatic processing, such as peak recognition, were avoided by 

manual control of the peaks subjected to quantification. The limit of detection was 0.01 

mg/mL, accuracy of the results in the range of 0.01 to 2.3 mg/mL was ~5 %. 

 

2.6.   Material 

All reference compounds used in the animal assays were either synthesized at Boehringer-

Ingelheim Pharma GmbH & Co. KG or purchased from commercial sources with at least 

analytical grade or as commercial drugs for human treatment. Sodium 2,2-Dimethyl-2-

Silapentane-5-Sulfonat (DSS) was obtained from Cambridge Isotope Laboratories, Inc. 

(Andover, Massachusetts, USA) and deuterium oxide (D2O) from euriso-top (Saint-Aubin 

Cedex, France). All further chemical reagents were again at least from analytical grade and 

purchased from commercial sources. 

 

2.7.   Classification procedure  

NMR spectra were treated as (high-dimensional) real-valued vectors, which need to undergo 

certain post-processing and feature extraction steps for the following classification. Given 

annotated sets of sample vectors, the parameters of toxicity models were derived 

automatically using SVMs from machine learning theory. We trained SVMs with a linear 

kernel on distinct views of the training data by applying different configurations of post-

processing and feature extraction methods, respectively. Post-processing variations included 

different bucketing procedures (bucket widths of 0.04 ppm, 0.02 ppm and 0.01 ppm) and 

scaling either with or without Standard Normal Variate (SNV) correction (Barnes et al., 

1989). Feature extraction for data reduction was done by PLS transformation, projecting the 

spectra onto a lower dimensional space. The final dimensionality varied from five to fifty (in 

steps of five), overall resulting in 66 different configurations of spectra processing. 

For the final classification an optimized selection of the resulting SVMs was aggregated by 

pursuing a majority vote strategy, i.e. the overall decision regarding toxicity of a particular 
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NMR spectrum was given by the majority of classification results provided by different 

SVMs. The SVMs for the resulting so-called Ensemble (Kittler et al., 1998) were selected by 

ranking the single SVMs according to their individual performance. The number of 

considered experts was gradually increased until the optimal overall classification 

performance was reached.  

 

2.8.   Evaluation of predictivity by cross-validation 

The data set used for training and parameter optimization was initially grouped with respect to 

the particular substances’ targets and indications to avoid artifacts from efficacy, chemistry or 

different other toxicities (cf. Discussion 4.4.). Structurally preserving this grouping, the 

sample set was manually split into five disjoint sub-sets, focusing on (almost) equal ratios of 

non-toxic and toxic samples for the actual model among all data sets. By means of a five-fold 

cross-validation we ensured that every sample was used three times in the training, once in the 

validation and once in the test data set. The final classification rates were averaged over the 

results of the different validation or test data sets, respectively. Due to its robustness to 

imbalanced data sets the Matthews Correlation Coefficient (MCC) (Baldi et al., 2000) was 

chosen as major optimization criterion during parameter optimization. Additionally, 

specificity, sensitivity and classification accuracy were calculated, representing the percentage 

of correct classified toxic, non-toxic or overall samples, respectively. 

MCC =
TP ×TN − FP × FN

(TP + FN)(TP + FP)(TN + FP)(TN + FN)
 

FPTN
TNySpecificit
+

=  

FNTP
TPySensitivit
+

=  

FNFPTNTP
TNTPAccuracy

+++
+

=  

(TP: number of true toxic predictions, TN: number of true non-toxic predictions, FP: number 

of false toxic predictions, FN: number of false non-toxic predictions). 
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3.   Results  

3.1.   Classification of proximal tubule kidney toxicity   

A model for proximal tubule kidney toxicity was built from a data set using 30 known non-

proximal tubule toxic compounds (637 spectra) and 18 proximal tubule toxic compounds (259 

spectra) (Table 1). For the annotation, the following histological observations were classified 

as toxic with respect to proximal tubule kidney: Apoptosis, necrosis, degeneration, or similar 

observations of proximal tubule kidney cells. Compounds inducing only deposition of 

material (e.g. lipofuszinosis) without inducing any further histological changes were not 

judged to be toxic. The source of information for proximal tubule kidney toxicity was mostly 

from previous studies with treatment periods of two weeks including histological endpoints. 

Dose selection for compounds tested in house was based on the highest free or the lowest 

toxic dose. When data was taken from external studies a factor of 3 to 10 was added in order 

to avoid differences from rat strain or interlaboratory variance. This resulted in more than 18 

compounds covering more than 11 different targets, which thereby present a broad chemical 

background. Compounds inducing other toxicities, e.g. liver toxicity, phospholipidosis, other 

kidney toxicities, or causing functional changes, such as diuresis, were again equally 

distributed between both groups thereby aiming at proximal tubule kidney toxicity being the 

main difference between both groups (for further information on compound characteristics see 

Table 2). 

For proximal tubule toxicity, predictivity was comparable for the validation and the test data 

set, indicating robust classification models using relevant features from the spectral data 

(Table 1). After optimization of post-processing and feature extraction methods, classification 

by a single SVM resulted for the test data set in an accuracy of 71 %, a specificity of 81 % 

and a sensitivity of 47 %. An MCC of 0.283 was achieved. Aggregation of the best 6 single 

SVM classifications derived from modified post-processing and feature extraction methods 
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slightly improved the classification accuracy to 73 %, the sensitivity to 53 %, but did not 

change the specificity (81 %), overall leading to an increased MCC of 0.334 (cf. Table 1).  

Performing classification of compounds at a certain dose (instead of a single sample) 

improved single SVM classification to an accuracy of 75 %, clearly enhanced sensitivity to 72 

%, slightly reduced specificity to 77 %, overall resulting in a slightly increased MCC of 

0.472. Aggregation of the 13 best SVMs in an Ensemble (from varied post-processing and 

feature extraction procedures) clearly enhanced classification with a final accuracy of 85 %, a 

specificity of 88 % and a sensitivity of 78 %. This resulted in a significantly increased MCC 

of 0.660 (for individual data of each compound see Table 1). Differences in the number of 

experts used within the Ensembles for classification of single samples and compound-dose 

combinations were caused by the individual optimization procedure. The experts’ 

performance varied between classification of single samples and compound-dose 

combinations as we expected, and thus led to different selections of experts. 

  

3.2.   Classification of phospholipidosis  

A model for phospholipidosis was built from a data set using 20 non-phospholipidogenic 

compounds (403 spectra) and 17 phospholipidogenic compounds (330 spectra) (Table 3). 

Information for the annotation of phospholipidosis was derived from studies with histological 

endpoints after a treatment period of about 2-13 weeks, using foam cell accumulation in at 

least one organ as the classification criterion. As for proximal tubule kidney toxicity, dose 

selection for compounds tested in house was based on the highest free or the lowest toxic 

dose, and again for external studies a factor of 3 to 10 was added. Again a broad chemical 

background was guaranteed by using more than 17 compounds from more than 12 different 

targets in each group, and compounds with other effects, such as liver toxicity, kidney 

toxicities, or diuresis, were equally distributed over both groups (cf. Table 2). 

In contrast to the model for proximal tubule kidney toxicity, the predictivity for the validation 

and the test data set for the phospholipidosis model differed from each other dramatically 
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(Table 3): The validation data set gave comparably good results as seen with the proximal 

tubule kidney toxicity model, and showed similar improvements with the implementation of 

compound- and Ensemble-based evaluation. Nevertheless, the test data predictivity was 

strongly reduced for specificity as well as sensitivity, leading to a drop in accuracy and MCC: 

MCC values were around zero, indicating that prediction was just driven by chance. We thus 

concluded, that the phospholipidosis model was overfitted, which could only be observed 

when using the test data set.  

 

3.3.   Phenylacetylglycine (PAG) as a biomarker for phospholipidosis 

Phenylacetylglycine (PAG) was quantified in the urine samples, with the individual 

concentrations covering a wide range of at least two log units in rat urine, ranging from <0.01 

to 2.31 mg/mL. In order to determine whether phospholipidogenic compounds induce higher 

PAG values a histogram was plotted comparing non-phospholipidogenic (22 compounds 

referring to 446-458 samples) with phospholipidogenic compounds (17 compounds referring 

to 338-345 samples), with again each group containing compounds with and without different 

other toxicities or functional changes (Fig. 1). 

It was clearly shown that the distribution of PAG values was independent of the 

phospholipidogenic potential of a compound. This was not only observed using the PAG 

concentrations in urine, but also after normalizing the PAG concentration to urine volume, 

urine creatinine or urea concentrations. Thus, PAG failed as a stand-alone biomarker to 

predict phospholipidosis. 

 

4.   Discussion 

4.1.   Classification of NMR spectra by Support Vector Machines 

For both reliable and efficient analysis of urine-derived NMR spectra we focused generally on 

the application of pattern recognition techniques, allowing us to evaluate more parameters 

than it would be feasible by applying human expert knowledge only. More specifically, we 
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were aiming at robust statistical models that can automatically predict putative toxicities of 

unknown spectra (treated as real-valued feature vectors). The parameters of these models 

were derived automatically by exploiting machine learning techniques based on an annotated 

data set of training samples. Since in most in vivo data sets the amount of training data is 

small, we decided for the application of SVMs to model the differences between certain 

toxicity classes. Basically, SVMs require only a small number of parameters to be estimated, 

which allows for robust training even on small data sets (cf. e.g. Burges 1998). SVMs linearly 

separate samples originating from different pattern classes (e.g. non-toxic and toxic) by a 

discriminating hyperplane, which is defined by using sample vectors from the training data 

set. It is the simplicity of this classification approach together with its modesty with respect to 

the amount of annotated sample data required for automatically deriving robust classifiers that 

makes SVMs popular in general (e.g. Joachims 1998; Rangwala & Karypis 2005; Dror et al., 

2005) and successful especially for the application described in this study.  

 

4.2.   Ensemble classification based on varying post-processing and feature extraction 

For the analysis of NMR spectra we investigated the effectiveness of SVMs estimated on 

training data, which were treated utilizing different configurations of post-processing and 

feature extraction methods. Different bucketing methods integrating short spectral regions 

into single intensity values reduce the effects of shifting peaks induced by varying different 

experimental conditions (e.g. pH, ion concentration, temperature). Generally, bucketing is 

applied as a standard procedure for classification purposes (Holmes et al., 1998a; Holmes et 

al., 1998b; Beckonert et al., 2003; Azmi et al., 2005), but the widely used bucket width of 

0.04 ppm does not seem to be optimal and was thus optimized. 

Scaling real-valued features normalizes their numerical ranges and can improve the 

subsequent classification procedures since normalized data can be compared directly. We 

therefore used SNV correction as an additional option within post-processing, which scaled 

spectra to unity standard deviation. The application of PLS transformation reduced the 
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dimensionality of the original spectral data while conserving the contained discriminating 

information, which allowed for effective SVM modeling.  

Every variant of SVMs (trained on samples that underwent one possible combination of the 

above mentioned post-processing and feature extraction methods) covers different aspects of 

the underlying data thus being an expert with a more or less focused view on the data. Due to 

the strong variability of biological data it is hardly possible to find a single expert, which 

exclusively covers the most favorable view and thus gives generally good predictivity results. 

Therefore, we aggregated single SVMs to an Ensemble, i.e. a majority vote of multiple 

experts’ “opinions”. Since sensitivity in this kind of data sets is the weakest predicted 

parameter when compared with accuracy and specificity, it may be that the sensitivity results 

from the Ensemble classification could be improved when compared to the results of the best 

single SVM. Indeed, for the proximal tubule toxicity model, sensitivity was improved by 

about 20-25%. Furthermore, using the MCC as the primary optimization criterion, we 

succeeded to improve overall prediction. Taken together, we showed that the aggregation of 

multiple experts’ “opinions” into the classifier Ensemble in comparison with single SVMs 

improved the overall classification performance (cf. Tables 1 and 3).  

 

4.3.   Classification of substances at a certain dose 

The aim in safety pharmacology is to identify risks of compounds at the level of a certain 

dose, but usually not at the level of a single animal or spectrum. By having two pieces of 

information together (spectra corresponding to the compound-dose combinations and the 

prediction for every single spectrum), a classification with respect to these compound-dose 

combinations is possible. After the selection of samples corresponding to a certain compound-

dose combination, the final prediction was achieved by majority voting with respect to the 

single spectras’ classification results. Thereby the biological variation of responses to an 

applied compound was reduced and the classification performance increased by averaging 

over the classification results of samples from usually eight different rats (i.e. 16 samples). 
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The reason for the biological variation was on the one hand due to inter-individual variance, 

and on the other hand intentionally included to the data set by using different gender and urine 

collection time-points. 

 

4.4.   Reasons for the structure of reference compound mixtures 

Automatic classification of NMR spectra is achieved based on statistical models, which are 

estimated on a labeled set of training samples. These models can thereafter be used to classify 

new samples according to different model-specific patterns that were identified as class-

discriminating on the training data set. Compound-induced spectral changes, which are not 

characteristic for the modeled toxicity, but e.g. caused by efficacy, other toxicities or 

excretion of the compound and its metabolite(s), will be used for class-discrimination in sub-

optimally selected data sets. Generalization from such a data set for prediction of new 

compounds will most probably give poor predictivity. Therefore our data set was optimized 

using a large set of different compounds with varying chemical background, mechanisms of 

actions and additional toxicities. Additionally, compounds with similar known chemical 

structures or effects were distributed among the so-called non-toxic and toxic class, when 

feasible. Thereby, we reduced the effect of single compounds and increased the impact of the 

selected toxicity as the main differentiation criterion between the two classes. 

This also led to the advantage that we did not need to “clean” the spectra from those peaks, 

which are related to urinary excretion of the compounds and their metabolites, or to changes 

related to efficacy and other toxicities. Thereby, we could strongly simplify the automated 

approach of spectral handling. 

 

4.5.   Kidney as a target organ for toxicities of compounds 

Compound-induced effects on the kidney can be grouped in functional changes, such as 

diuresis or antidiuresis, and in organ damage, such as damage localized in the glomerulum, 
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renal papillae, proximal or distal tubule. Proximal tubule toxicity and renal papillae necrosis 

are the most often observed compound-induced toxicities seen in the kidney (Miller 2002). 

Aiming at early identification of critical hazards, we initially started to predict proximal 

tubule kidney toxicity after single compound administration by using clinical chemistry, 

which is described in literature especially after multiple compound administrations (Ogura et 

al., 1996; Whiting & Brown 1996). A single compound administration approach was 

validated for in house use, investigating rat urine in a standard experimental design using 

clinical chemistry (Pestel et al., 2006). This “renal and liver function assay” routinely 

performed in our laboratory measures a battery of clinical chemistry parameters in serum as 

well as urine, including urinary enzyme excretion of ß-NAG, ALT, LDH, ALP and GGT as 

markers for kidney damage (Pestel et al., 2006; Ogura et al., 1996; Whiting & Brown 1996). 

Comparing the clinical chemistry approach with the metabonomics approach, the clinical 

chemistry assay needs to use significantly more rats: 20 animals per group for clinical 

chemistry (cf. Pestel et al., 2006) as compared to 8 animals for metabonomics. Additionally, 

its throughput is about half of that of the metabonomics experimental design. With clinical 

chemistry, proximal tubule kidney toxicity can be predicted after single compound 

administration with an accuracy of 74 % compared to histology (own unpublished data). 

However accuracy for toxic compounds is only 36 %, whereas non-toxic compounds are 

predicted by 96 %.  

We thus aimed at improving the sensitivity in a single compound administration approach by 

enhancing the number of parameters using the metabonomics experimental design. It was 

clearly shown that the metabonomics approach is superior to the clinical chemistry approach, 

not only for accuracy (85 % vs. 74 %), but especially for the prediction of toxic compounds 

(sensitivity 78 % vs. 36 %). Thus, metabonomics using NMR-spectra from rat urine is a more 

predictive, higher throughput and less animal using approach than clinical chemistry. 

 

4.6.   Phospholipidosis: Currently available models and their limitations 
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Phospholipidosis was chosen as a second model to investigate the feasibility of predicting 

toxicities after single compound administration. Since histology endpoints cannot be used 

after short treatment periods, diverse biomarkers were previously investigated (Baronas et al., 

2007; Hasegawa et al., 2007; Delaney et al., 2004). To our knowledge, actually no in vivo 

assay has demonstrated the prediction of phospholipidosis after single compound 

administration on a routine base. On the one hand phospholipidosis is associated with one 

common observation, the induction of intracellular phospholipid accumulation as lysosomal 

concentric lamellar bodies often due to inhibition of a lysosomal phospholipase, and should 

therefore induce a standardized biochemical pattern (Reasor & Kacew 2001). On the other 

hand, phospholipidosis leads to diverse observations in the animals. Not only species specific 

but also organ specific induction of phospholipidosis is well described, and additionally 

heterogeneous functional consequences reaching from minimal adaptive reactions in a single 

organ to fibrosis or necrosis in multiple organs are reported (Reasor & Kacew 2001).  

Thus, as an initial screening assay, diverse cellular in vitro screens for predicting 

phospholipidosis are described, which usually allow ranking of compounds within a certain 

target class (Niai et al., 2007). Nevertheless, interpretation of these assays can mostly only be 

done, when additional information from studies with histological endpoints is available for at 

least one compound from a certain target class.  

We thus investigated, whether it is possible to predict phospholipidosis in vivo (independent 

from any experience with the compound class, target or indication) after only single 

compound administration in order to speed the compound selection process on the level of the 

research process. With the present approach, we were not able to set up a predictive in vivo 

model with single compound administration for phospholipidosis (Table 3). Since the 

methodological approach using multivariate analysis of urine NMR spectra in general worked 

well for the proximal tubule toxicity model, the reason of failure to predict phospholipidosis 

may lay on the biological side. We can only speculate whether the lack of predictivity is due 
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to the complexity of the disease (implicating different organs) or due to the often delayed 

onset of the disease. 

 

These results demonstrate the relevance of an adequate evaluation strategy for classification 

models. Very often, cross-validations using only training and validation but no test data sets 

are used (Beckonert et al., 2003; Ebbels et al., 2003; Westerhuis et al., 2008), typically due to 

the lack of access to a larger data set needed for including a test data set. We show that 

although the phospholipidosis as well as the proximal tubule kidney toxicity models achieved 

comparable predictivities on the validation data set, only the model for proximal tubule 

kidney toxicity achieved acceptable predictivities on the test data set. The observed overfitting 

of the phospholipidosis model was only detected by using a test data set. Thus, in agreement 

with the observations from Westerhuis et al. (Westerhuis et al., 2008), we clearly recommend 

to incorporate a test data set in the cross-validation strategy in order to be able to detect 

overfitting. 

 

4.7.   Biomarkers 

High expectations are associated with “metabonomics” to deliver biomarkers for further 

profiling in clinics. A broad field of biomarkers (especially from NMR- and MS-based 

metabonomics approaches) is published to be associated with various defined toxicities. In 

general, biomarkers can be identified and quantified in NMR-spectra if a sufficiently high 

concentration is present in the samples. PAG is published as a marker for phospholipidosis 

even after single compound administration (Hasegawa et al., 2007; Delaney et al., 2004; 

Nicholls et al., 2000), but the predictivity as a marker is critically discussed within the expert 

field.  

We investigated in a second approach whether prediction of phospholipidosis is feasible using 

a stand-alone marker, PAG. The data used for this study was comparable to that used for the 

multivariate approach: Two non-phospholipidogenic compounds were added, and few spectra 
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were excluded, of which data from clinical chemistry was not available (but necessary for 

normalization of PAG values). It was shown that PAG concentrations varied strongly within 

the data set, but variation was clearly not associated with phospholipidosis, whether 

investigated as the urinary concentration or as a normalized value regarding urine volume, 

creatinine or urea concentration (Fig. 1). Thus, a stand-alone biomarker approach with PAG 

was unsuccessful in predicting phospholipidosis after single compound administration, as 

beforehand observed with the multivariate classification approach. 

 

4.8. Summary 

NMR-based urine analysis in rats was shown to be a predictive tool for investigating proximal 

tubule kidney toxicity after single compound administration in rats. In contrast, 

phospholipidosis could not be predicted after single compound administration neither using 

NMR-based urine analysis nor using PAG. The effectiveness of SVM Ensembles based on 

variation of post-processing and feature extraction methods for classification of single spectra 

as well as of certain compound-dose combinations could be shown. Taken together, we 

established a predictive tool for investigating compounds in early safety studies with a 

relatively high throughput, low animal numbers need, and compound use and no need for 

prior knowledge in the compound class. 
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Figure Legends 

 

Figure 1. Lack of prediction of phospholipidosis with phenylacetylglycine (PAG). PAG-data 

from non-phospholipidogenic compounds (22 compounds referring to 446-458 samples) and 

phospholipidogenic compounds (17 compounds referring to 338-345 samples) were compared 

with and without normalization in a histogram plot. The concentration of PAG in rat urine as 

well as PAG concentrations normalized to excreted urine volume, urine creatinine 

concentrations or urine urea concentrations were used to group the data set into 20 equal-

distant values on the axis of abscissae (bins). The percentages of samples within these bins are 

given on the axis of ordinates. None of the representations was able to discriminate between 

the non-phospholipidogenic and the phospholipidogenic group. 
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Tables 

Table 1 

Prediction of proximal tubule kidney toxicity 

 

Individual results for group prediction is shown compound-wise from validation and test data 

sets for negative (30 compounds referring to 637 spectra) and positive (18 compounds 

referring to 259 spectra) compounds according to histology. Compounds, which are falsely 

predicted, are colored in grey. Additionally, the prediction measures accuracy, specificity, 

sensitivity and the Matthews correlation coefficient (MCC) are given for spectra-wise 

analysis, using only one expert (Single SVM, sample), using an Ensemble of experts (SVM 
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Ensemble, sample) or using single SVMs (Single SVM, group) or an Ensemble but with a 

compound- and dose-wise decision (SVM Ensemble, group). 
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Table 2 

Data sources used for annotation of reference compounds for proximal tubule kidney toxicity 

and phospholipidosis. Reference compound doses are given in the respective Tables for 

proximal kidney tubule toxicity (Tab. 1) and phospholipidosis (Tab. 3).  
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Table 3 

Prediction of phospholipidosis  

  

Individual results for group prediction is shown compound-wise from validation and test data 

sets for negative (21 compounds referring to 403 spectra) and positive (20 compounds 

referring to 330 spectra) compounds according to histology. Compounds, which are falsely 

predicted, are colored in grey. Additionally, the prediction measures accuracy, specificity, 

sensitivity and the Matthews correlation coefficient (MCC) are given for spectra-wise 

analysis, using only one expert (Single SVM, sample), using an Ensemble of experts (SVM 

Ensemble, sample) or using single SVMs (Single SVM, group) or an Ensemble but with a 

compound- and dose-wise decision (SVM Ensemble, group).  
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Figures 

 

 

 

Figure 1. Lack of prediction of phospholipidosis with phenylacetylglycine (PAG). PAG-data 

from non-phospholipidogenic compounds (22 compounds referring to 446-458 samples) and 

phospholipidogenic compounds (17 compounds referring to 338-345 samples) were compared 

with and without normalization in a histogram plot. The concentration of PAG in rat urine as 

well as PAG concentrations normalized to excreted urine volume, urine creatinine 

concentrations or urine urea concentrations were used to group the data set into 20 equal-

distant values on the axis of abscissae (bins). The percentages of samples within these bins are 

given on the axis of ordinates. None of the representations was able to discriminate between 

the non-phospholipidogenic and the phospholipidogenic group. 


