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Abstract. We present an approach for the automatic classification of
Nuclear Magnetic Resonance Spectroscopy data of biofluids with respect
to drug induced organ toxicities. Classification is realized by an Ensemble
of Support Vector Machines, trained on different subspaces according to
a modified version of Random Subspace Sampling. Features most likely
leading to an improved classification accuracy are favored by the deter-
mination of subspaces, resulting in an improved classification accuracy of
base classifiers within the Ensemble. An experimental evaluation based
on a challenging, real task from pharmacology proves the increased classi-
fication accuracy of the proposed Ensemble creation approach compared
to single SVM classification and classical Random Subspace Sampling.

1 Introduction

The reliable detection of drug induced adverse effects which might be considered
toxic for particular organs or regions of organs is a major prerequisite for ef-
fective drug design in pharmacology. Within the research field of Metabonomics
putative toxicities of particular pharmaceuticals are usually indicated by the
change of concentrations of metabolites. For both qualitative and quantitative
measurements of such changes the so-called 1H Nuclear Magnetic Resonance
(NMR) Spectroscopy of biofluids extracted from the treated organism has been
proven very effective [1]. The process of NMR spectroscopy results in (high-
dimensional) spectral data (cf. figure 1) where both positions and intensities of
particular peaks convey the information about particular metabolites.

The process of spectra generation including the treatment of experimental
animals is a very time and cost intensive task which usually results in rather
small sample sets (typically only a few hundred spectra are available each con-
taining several thousand measurement points). In addition to this the manual
analysis of these complex data-sets is very tedious and its results are often of
more or less subjective type. Thus, sophisticated methods for the automatic
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Fig. 1. Exemplary NMR spectrum consisting of approx. 130 000 measurements

classification of NMR spectra dealing with both high dimensionality of the orig-
inal data and small sample sets are required. Surprisingly, so far only very few,
rather straightforward techniques have already been developed for the task of
automatic analysis of NMR spectra.

In previous (internal) investigations we observed that the application of Sup-
port Vector Machines (SVMs) [2] performs best when aiming at the automatic
classification of NMR spectra with respect to certain toxicity classes. However,
for the application of an automatic analysis system in productive pharmacolog-
ical environments its classification rate needs to be improved.

Generally, in order to process small but complex data sets recently approaches
utilizing multiple classifiers have become popular. According to this, we propose
a novel approach for generating SVM Ensembles based on iterative adapted
Random Subspace Sampling (RSS) exploiting small but high-dimensional sam-
ple sets of NMR spectra. Contrary to standard RSS techniques our method is
based on a dimension weighting scheme. According to SVM based classification
results those feature vectors’ components are favoured which are most informa-
tive with respect to the overall analysis. Based on a challenging task examining
real pharmacological data the effectiveness of the new approach is demonstrated.

In the following section the state-of-the-art specifically for automatic classifi-
cation of NMR spectra as well as for the general application of multiple classifier
systems is briefly summarized. In section 3 the proposed approach of SVM En-
sembles based on adapted Random Subspace Sampling is discussed. The results
of the experimental evaluation are presented in section 4. The paper concludes
with a discussion of perspectives and an outlook on future work.

2 Related Work

The determination of pharmaceutical adverse effects is an important prerequisite
for drug design and its automation is highly desirable. However, according to
the literature only few and more or less straightforward techniques have been
developed addressing the automatic classification of NMR spectra.

In order to process (very) high-dimensional raw NMR spectral data, usu-
ally a basic initial abstraction procedure is applied. Therefore, small spectral
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regions are aggregated and the corresponding integral value is used for further
processing. By means of this bucketing technique [3] “feature” vectors consisting
of several hundred components (instead of thousands) are created.

The most prominent related work has been pursued within the COMET
(Consortium for Metabonomic Toxicity) project [4] aiming at a system for com-
plete analysis of (large amounts of non-public) NMR data including their auto-
matic classification based on CLOUDS (Classification of Unknowns by Density
Superposition [5]). Using CLOUDS toxicity classes are modeled by mixture den-
sities of Gaussians (with predefined standard deviations) centered on the training
samples used. Inspecting the related literature it is, unfortunately, not clear how
the system performs for small sample sets as addressed by this paper.

For general classification tasks where only small sample sets are available
the application of Support Vector Machines has been proven very effective.
Classification is based on linear separation of data originating from different
classes. Therefore, a discriminating hyperplane is constructed utilizing a subset
of training vectors as support-points and a non-linear transformation into a high-
dimensional feature space allowing for linear separation. For efficient evaluation
usually kernel functions are applied avoiding the actual transformation into the
high-dimensional space. Since linear separability (even in the high-dimensional
space) cannot be guaranteed for all sample data the hyperplane’s optimization
is related to a so-called soft margin defined by slack variables [2].

In the last few years the application of multiple classifier systems has been
proven effective for complex data sets. Therefore, different base classifiers are
estimated either on modified sample sets or on alternative data representations.
Both variations of the training data are derived from the original sample sets.
Applying the set of classifiers to the original task results in multiple decisions
which are aggregated in various ways in order to achieve a final classification.
Compared to single classifiers substantial improvements in the overall classifica-
tion performance of such Classifier Ensembles can be achieved [6].

The principle constraint for base classifiers used for Ensemble techniques is a
classification accuracy of better than random – so-called weak classifiers. How-
ever, the Ensemble approach performs even better when strong base classifiers
like SVMs are deployed (cf. e.g. [7]). Compared to single classifier approaches
substantial improvements in classification performance can be obtained by En-
sembles only when the underlying base classifiers contain substantial mutual
diversity, i.e. modeling different characteristics of the training set.

As one approach for Ensemble creation utilizing a (limited) set of train-
ing data Bagging aggregates classifiers estimated on bootstrap replicates of all
training samples [8]. Sample sets are derived (most likely) avoiding redundant
or less informative samples for training and therefore possibly increasing the
classification accuracy of the base classifiers. Alternatively, Boosting focuses on
(re-)weighting of sample data for their consideration in the training procedure.
During this iterative procedure the focus is concentrated on those samples which
are harder to classify, i.e. causing classification errors.
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Alternatively, base classifiers covering sub-spaces of the original feature space
can be integrated into Ensemble approaches. Most prominently the Random Sub-
space Sampling (RSS) technique randomly selects subsets of feature components
for base classifier training [9]. RSS reduces the effect of redundant or less infor-
mative dimensions and (most likely) alleviates the discrepancy between small
sample-set sizes and high dimensionality.

3 SVM-Ensemble based on Adapted RSS

The analysis of our first experiments addressing the automatic classification of
NMR-spectra with respect to organ toxicities empirically proved the suitability
of C-SVMs [2], explicitly controlling the sum of slack-variables in soft margin
classification. Thus, they were chosen as starting point for our developments.
Multiple SVM base-classifiers are integrated into an Ensemble aiming for im-
proved classification of NMR-spectra when only small training sets are available.

Even when considering the bucket representation of NMR-spectra it is very
unlikely that every particular dimension of the resulting (high-dimensional) fea-
ture vectors represents a similar amount of information for the overall classifica-
tion process. In order to obtain reasonably diverse but relevant sample-sets for
the estimation of the abovementioned base classifiers we propose the application
of (improved) Random Subspace Sampling.

According to our practical experiences standard RSS, unfortunately, does not
guarantee the selection of the most relevant feature components.1 Thus, in our
modified approach the random selection process is based on an underlying prob-
ability distribution assigning weights to every feature component. Exploiting this
distribution multiple sub-spaces are derived from the original 203-dimensional
NMR-bucket space by RSS. By means of the resulting sample-sets SVM base
classifiers are trained and integrated into an Ensemble.

Since the optimal feature components’ weights are not known in advance its
probability distribution is learned in an iterative adaptation procedure. For this
purpose, sub-spaces are created by applying adapted RSS, and SVMs are trained
accordingly. During cross-validation these base classifiers are evaluated and ac-
cording to the classification accuracies the weights of the feature components are
either increased or decreased, thus, propagating the most relevant components.

In addition to the overview of the new approach given above and illustrated
in figure 2, in the following, details regarding SVM training, adaptation of the
actual weights, and the creation of the SVM Ensemble will be described.

3.1 Automated SVM Training

The classification accuracy of C-SVMs is mainly dependent on the choice of a
feasible C value and possibly on additional kernel-specific parameters. A linear

1 Since training / evaluation of SVM based Ensembles is rather time intensive the
number of base classifiers, i.e. RSS guesses, is practically limited.
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Fig. 2. Creation of SVM-Ensembles based on adapted RSS (see text for description).

kernel is not parametrized, therefore reducing the complexity and time needed in
the training phase. The C-parameter is optimized by grid search and the linear
kernel is used in all further investigations. Choosing too small C-values leads to
a low classification accuracy and can be improved by selecting larger values up
to an asymptotic behavior (cf. e.g. [10]). This process motivates an automatic
grid selection. A wide and coarse logarithmic grid is defined in a first phase
and the evaluation starts at a reasonable small value, stopping if convergence in
classification accuracy is reached (cf. figure 3). The best classification result γT is
determined and, based on this, the grid for the second phase is defined. Starting
at the first value exceeding γT

2 up to the point of convergence, the solution
space is divided into M steps equally spaced on a logarithmic scale (cf. figure
4). Increasing M results in a finer grid, but also in a longer training phase. The
best parameter setting is chosen and used for the classification of test samples.
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Fig. 3. Accuracy on a coarse, wide grid
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Fig. 4. Accuracy on an optimized grid

3.2 Modified Random Subspace Sampling

We propose a modification of Random Subspace Sampling (upper part of figure
2) , specifically selecting the putatively most informative features with higher
probability. Increased classification accuracy of SVMs trained on the resulting
subspaces can be expected due to the explicit adaptation of the probability dis-
tribution “guiding” the underlying random process of RSS towards the selection
of reasonable subsets.

Given a D-dimensional data set, all weights wi for i = 1, . . . , D are initialized
to one and the selection probability pi for each feature is calculated according
to these weights.

pi =
wi∑D

j=1 wj

i = 1, . . . , D

Based on these probabilities K (most likely) different d-dimensional (d < D)
subspaces Φk for k = 1, . . . ,K are determined based on the actual probability
distribution and linear SVMs are trained on every subspace according to the
algorithm described in section 3.1. All SVMs are sorted with respect to their
classification accuracy, or an alternative evaluation measure, ranging from the
best accuracy γB to the worst γW . A scaling factor τk is determined for each
SVM, dependent on a free parameter ν and the corresponding classification
accuracy γk.

τk =

{
1
ν +

(
2(γk−γW )
γB−γW

) (
1− 1

ν

)
if γk−γW

γB−γW
< 0.5

(2− ν) + (2ν−2)(γk−γW )
γB−γW

otherwise
k = 1, . . . ,K; ν > 1

The values of every dimension are multiplied by the scaling factor of the SVMs, it
was used within, reducing the weights of dimensions possibly leading to a lower
classification accuracy and vice versa. The iterative reduction of probabilities
corresponding to putatively less informative dimensions leads, after several iter-
ations, to their de-facto exclusion from RSS due to a selection probability close
to zero. Consequently, the classification accuracy of trained SVMs is increased,
and, simultaneously, the diversity of selected subspaces is decreased (see below).
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3.3 SVM-Ensemble

The overall principle of our proposed classification system corresponds to an En-
semble of L SVMs as (strong) base classifiers (lower part of figure 2) . Different
SVMs are trained based on RSS, with an adapted random selection of dimen-
sions for subspaces, and aggregating their classifications into a final decision. All
SVMs within an Ensemble are trained on diverse subspaces Φl for l = 1, . . . , L,
determined according to a probability distribution of the prior adaptation pro-
cess as described in section 3.2. Unlike an increasing classification accuracy, the
diversity of SVMs built within the iterative adaptation process decreases and
possibly converges to one final subspace. Therefore, the final probability distri-
bution is apparently not the optimal choice in order to build an Ensemble of
diverse base classifiers and an optimal intermediate result has to be selected.
In addition to the classification accuracy, several measures of diversity (cf. [11],
[12]) are possible and can be applied for the selection of a feasible probability
distribution for building the SVM-Ensemble.

The selected probability distribution is used for the determination of an sub-
space for every base SVM and these are trained according to the algorithm
described in section 3.1. A final classification y is achieved by aggregating the
base classifier decisions ỹl by maximum vote. An improvement in the Ensemble
accuracy is expected due to the improved base classifier’s accuracy and their
combination in an Ensemble.

4 Experimental Evaluation

In order to demonstrate the effectiveness of the new approach for SVM-Ensembles
based on adapted Random Subspace Sampling as proposed in this paper an ex-
perimental evaluation based on real NMR sample sets has been pursued. In the
following the data-sets used as well as the methodology applied, and the actual
results are briefly summarized.

4.1 Data-set and Methodology

The sample-set used for experimental evaluation consists of NMR-spectra ana-
lyzed in a real pharmacological task. Every spectrum originally consists of ap-
proximately 130 000 measurement points. By means of an initial bucketing step
the dimensionality is reduced to 203. In summary, the data-set consists of 530
samples where every spectrum is assigned either to control (420 samples) or toxic
(110), i.e. a two-class problem is considered.

For training, parameter optimization, and test the data-set was split into
five disjoint sets by randomly selecting samples. Note that the actual random
selection respected the imbalanced distribution of toxic and control spectra as
mentioned above. By means of a five-fold cross-validation we ensured that every
sample is once treated as test. In every of the five configurations possible three
fifths are selected for training and one fifth for cross validation. The final clas-
sification rates are averaged over the results achieved on the five test sets (the
particularly remaining fifths).
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In order to avoid putative statistical artifacts all experiments related to ran-
dom subspace sampling have been performed twenty times which (empirically)
represents an upper limit for reasonable turn around times using current personal
computers. The results reported correspond to averaging over all experiments.

Throughout the whole process of parameter training (SVM estimation, and
adaptation of feature components’ weights) we considered the Matthews corre-
lation coefficient (MC) as optimization criterion:

MC = (TP×TN−FP×FN)((TP+FN)(TP+FP )(TN+FP )(TN+FN))−1/2

with TP as number of true positive predictions, FP as number of false positives,
TN as number of true negatives, and FN as number of false negatives, respec-
tively. MC is normalized to [−1 . . . 1]. The larger MC the better the overall clas-
sification performance. The Matthews correlation coefficient was chosen because
it is hardly sensitive to imbalanced data-sets. In addition to this, classification
rates (overall (acc), and related to toxic (accT ) and control (accC) samples) are
reported which seems more informative for the actual Metabonomics task.

The experiments have been conducted using Matlab and the libSVM [13]
interface, and our own Ensemble classification system.

4.2 Results

We first compared the SVM-Ensemble approach to single SVM classification
in order to show the improvements already achieved by RSS SVM-Ensemble. In
addition, the classification results achieved by our proposed method are discussed
related to the single SVM and standard RSS approach.

The single SVM classifier and all further mentioned SVM base classifiers were
trained according to the algorithm described in section 3.1 by cross-validation, as
described in section 4.1, using M = 300 grid points in the second training phase.
Random Subspace Sampling was performed by selecting 70 % of the original
dimensionality randomly and the classification results of all base classifiers were
aggregated according to the maximum vote decision rule. Under variation of L,
the optimal number of base classifiers was assessed by cross-validation (cf. figure
7) and the classification results on the validation and test-set are shown in table
1. An increased MC can be achieved on the cross-validation set, but not on the
test-set due to the reduced classification rate of toxic samples, which implies a
better performance of the control samples.

The adaptation of prior probabilities for RSS was performed according to
the algorithm described in section 3.2 using K = 20 SVMs in each iteration

Table 1. Classification accuracy on the cross-validation and test-set.

cross-validation test

Method MC acc[%] accC[%] accT[%] MC acc[%] accC[%] accT[%]

single SVM 0.462 80.9 85.5 63.6 0.422 79.6 84.8 60.0

RSS(L=27) 0.537 86.1 95.1 51.5 0.404 82.4 93.1 41.4

adapted RSS (L=23) 0.623 87.7 92.6 69.1 0.499 82.8 87.7 64.1
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and scaling factor ν = 2. The process of increasing accuracy and decreasing di-
versity is shown in figure 5, using the MC for accuracy determination and the
Kohavi Walpert Variance, the Entropy Measure [11] and the Percentage Correct
Diversity Measure (PCDM) [12] as possible rates for the determination of diver-
sity. According to the MC and the Entropy Measure, a probability distribution
is selected by scaling both measures to the range [0 - 1] and using the distri-
bution from the iteration closest to the intersection point as demonstrated in
figure 6. The cross-validation classification results of the RSS and adapted RSS
SVM-Ensemble are illustrated in figure 7 under variation of L.

Our proposed method increases nearly all evaluation results compared to
single SVM classification and RSS SVM-Ensemble. The high accC-values of the
classical RSS approach results from the low classification rate of toxic samples,
thus predicting most of the test samples as control. However, with the proposed
method performance can be significantly increased for toxic samples, thus also
yielding an overall improvement in the MC measure.

5 Discussion

We presented a modified Random Subspace Sampling approach for the construc-
tion of SVM-Ensembles. The random selection process is based on an underly-
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ing probability distribution, assigning high probabilities to features, regarded
as most informative for classification by an prior adaptation phase. Within this
adaptation phase several SVMs are trained, evaluated and the weights for ev-
ery feature are modified, proportional to the relative classification accuracy. The
improvement of the base classifiers classification accuracy by using an adapted
probability distribution for subspace sampling leads to an overall improvement
in accuracy of the Ensemble.

A further improvement in classification accuracy is expected by the use of
alternative SVM kernel functions like the radial basis function or sigmoid kernel.
But for an experimental evaluation an efficient SVM training has to be developed
due to the more complex process of parameter optimization.

The bucketing procedure reduces the spectral dimensionality and serves as
simple feature extraction method, but decreases the resolution and correspon-
dence between features and single peaks. Reducing the size of integrated seg-
ments within the bucketing procedure facilitates the interpretation of weights
achieved in the adaptation phase. If a correspondence of most informative dimen-
sions to peaks of single metabolites could be achieved, (possibly) new biomarkers
for the detection of organ toxicities could be discovered.
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