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Abstract. Smart environments rely on context classification in order
to be able to support users in their daily lives. Therefore, measurements
provided by sensors distributed throughout the environment are ana-
lyzed. A main drawback of the solutions proposed so far is that the type
of sensors and their placement often needs to be specifically adjusted to
the problem addressed. Instead, we propose to perform context classifi-
cation based on the analysis of acoustic events, which can be observed
using arrays of microphones. Consequently, the sensor setup can be kept
rather general and a wide range of contexts can be discriminated. In an
experimental evaluation within a smart conference room we demonstrate
the advantages of our new approach.
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1 Introduction

With the advent of pervasive computing technologies, so-called smart spaces
have been introduced to support humans during their activities of daily living
(ADL). Varieties of sensors are embedded into the people’s homes and working
environments constantly monitoring activities and surrounding conditions. To
allow for practical application, the sensor setups must be chosen with care, re-
specting the specific requirements of the scenario. In the domestic domain, e.g.,
privacy issues are one key concern, while the flexibility of the sensor setup is
another for smart spaces which are used in a wide range of application. Typical
use cases for the latter are smart conference rooms and working environments,
which support the human users during meetings and presentations or assist in
collaborative working tasks (e.g. [16]).

A fundamental prerequisite for a number of applications related to smart
spaces is the precise knowledge of the environment’s context. In a smart con-
ference room, e.g., intelligent controlling of light sources depends on knowledge
about the current situation. While the luminosity must be kept below a cer-
tain level in the projection area during presentation, the opposite is desired
for discussions and collaborative tasks. On a more abstract level, an important
prerequisite for pro-active behavior of the smart environment is the knowledge
about the current situation.
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Fig. 1: System overview.

In this paper we propose a real-time context classification system based
on acoustic source localization (ASL). As smart conference rooms are usually
equipped with multiple microphones, acoustic events within the environment
can be constantly monitored. The configuration of the microphone setup is cho-
sen w.r.t. the characteristics of this sensor type only, not considering the specific
experimental setting. This generic setup allows the classification of a multitude
of situations, without the need to adopt the sensors’ configuration to the lat-
ter. Hence, it provides high flexibility in practical applications. For reasons of
comparison and to further improve the performance, a baseline system utilizing
environmental sensors (i.e. motion, air condition, luminosity and door status
sensors) is used and integrated into the classification process.

For classification, the signal energy as well as the spatial position of acoustic
events are calculated for each time frame and statistical features are derived, i.e.
mean and variance. Using a sliding window approach the latter are accumulated
over time, and the resulting vector is fed into a Multi-Layer Perceptron (MLP)
based classification system. An overview of the system structure is given in Fig. 1
illustrating the ASL based classification, the baseline system, and the integration
of the two. Direct measurements of the environmental sensors are used in the
feature extraction step whereas an acoustic source localization is used beforehand
for the acoustic sensors. The sensor types are treated separately in means of
classification and a final combination step results in a context decision.

The effectiveness of the given approach is demonstrated in an experimental
evaluation in a smart conference room. In the given scenario the results show im-
proved classification rates compared to the baseline system. Moreover, we show
that the two can be combined to improve the overall performance. The proposed
system is the first that allows context classification in smart environments based
on the acoustic analysis of human interaction patterns. The sensor configura-
tion is completely independent of the situation to classify in a specific scenario,
hence, it provides high flexibility in practical applications. Moreover, only statis-
tical data is used for the classification of context. In consequence, the presented
approach can also be applied to scenarios in which privacy requirements must
be met. The presented system is capable of real-time context classification, a key
requirement in practical applications.
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2 Related Work

A large volume of literature on situation analysis in smart environments exists,
which can be split into activity recognition (AR) and context classification. While
the former focuses on the analysis of ADL, the intention of the latter and the
proposed approach is to recognize the overall context of the environment, i.e.
the current, long-term situation of a smart room.

2.1 Situation Analysis in Smart Environments

The literature covers AR either based on computer vision [15] or by applying
pervasive computing approaches [1]. Whereas AR systems are usually based on
statistical modeling frameworks, such approaches can rarely be found in case of
context classification.

The evaluation of ontologies represents the methodology of choice instead. An
ontology represents a well-defined, expert-made set of rules, which describes sit-
uations in certain environments by means, e.g., of (fixed) combinations of sensor
events. For the conceptual and technical implementation of ontologies different
semantics and toolkits are used [6,14]. Also, semi-automatically constructed on-
tologies are described that allow to split the context model into a handcrafted
and an automatically derived part [12]. Whereas the first part covers more gen-
eral, domain-related aspects, the latter focuses on specialties of the particular
application. Still, prior expert knowledge remains an integral part of these rule
based approaches. In consequence, ontologies provide a methodology for context
classification in scenarios which can be described by a set of simple rules. Such
prerequisite can be met in case of sensor setups tailored towards a specific situa-
tion, in which a predefined combination or sequence of sensor events determines
the current situation. In case of continuous, rather noisy and widespread sensor
events; however, the application of ontologies is limited and more likely to fail.

Situational context classification using statistical models and common sensors
is hardly covered by related work. Using binary motion sensors in [18] topologi-
cal sensor networks are evaluated for this task. Focusing on energy saving in [5]
multi-modal environmental data (monitoring air quality, water consumption,
motion etc.) are analyzed using a hidden Markov model (HMM). In [8] mea-
surements from custom-made binary state change sensors are analyzed using an
HMM and Conditional Random Fields. A similar sensor network is considered
in [17] for tracking and activity recognition using a particle filter. However, all
these approaches rely on a multitude of sensors which must be installed and con-
figured precisely to cover possible human activities. Hence, expert knowledge and
a deep understanding of the users’ behavior is mandatory. In contrast, acoustic
sensors can be installed without such specific knowledge, enhancing flexibility
for practical applications.

2.2 Acoustic Source Localization

The problem of localizing the spatial position of an acoustic event is known
as acoustic source localization (ASL). Several techniques for solving this task
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using multiple acoustic sensors, i.e. microphones, are known. The main challenges
for an ASL system in a real world environment are noise and reverberation.
Possible noise sources are fans of electrical equipment, foot fall sounds or any
other putative unwanted sound events. Robustness against these factors are of
utmost importance, in order to obtain reliable results from an ASL system.

Time delay estimation based algorithms [3] first determine the delay of a
signal between two or more sensors and combine those time-difference of arrivals
(TDOA) in a second stage to form a source location. Not taking an explicit room
reverberation model into account, the generalized cross-correlation (GCC) [10]
provides a simple and efficient approach. Unlike the GCC method adaptive eigen-
value decomposition (AED) [2] models reverberation explicitly, by blindly esti-
mating the acoustic channels impulse responses. Its higher computational costs
are justified by a more robust TDOA estimation in reverberant environments.
Each TDOA restricts the acoustic source to lie on one sheet of a two-sheeted hy-
perboloid and hence the second stage needs to find the intersection of all TDOA
parameterized hyperboloids (e.g. [7]).

Steered response power (SRP) based ASL schemes use beamforming tech-
niques to steer a passive sensor array to different locations. The position with
the highest beamformer output power is then assumed to be the source location.
Hence, SRP algorithms avoid the two stage approach of the TDOA methods. Cal-
culating the SRP for all possible locations requires a high computational effort.
Nevertheless, DiBiase et al. [4] showed that the SRP of a simple delay-and-sum
beamformer is equivalent to a spatial combination of all pair-wise GCCs, which
leads to a computationally tractable ASL algorithm.

3 Context Classification using ASL

Today, there is a trend to equip smart conference rooms with multiple micro-
phones for teleconferencing applications or meeting recordings, which facilitates
the extraction of positions of interacting human speakers. In the near future,
distributed ad-hoc microphone arrays, e.g. the combination of mobile phones
and other embedded devices available, might fulfill this task. In the following,
we present our system for context classification in a smart environment which is
based on ASL information.

3.1 Acoustic Source Localization

Steered response power based ASL methods have shown good results under mod-
erate noise and reverberation levels. Due to this robustness and their additional
simplicity, we employ such an SRP scheme—namely the SRP-PHAT [4]—and
use the positions of the localized acoustic sources for context classification. Here,
we will shortly revisit SRP-PHAT.

The TDOA of a source signal between two or more receivers is the basic
building block of SRP-PHAT. A common approach for estimating a TDOA τ̂ij
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for the two-channel case is the GCC [10]

Rij(τ) = F−1{Ψij(ω)Xi(ω)X∗j (ω)}(τ) . (1)

It is the inverse Fourier transformation F−1{·}(t) of the cross-spectrum of the
acoustic channel i and j, where xi(t) = F−1{Xi(ω)}(t) is the i-th channel’s
signal. In order to shape the GCC for better TDOA estimation performance
the phase transformation (PHAT) [10] Ψij(ω) = |Xi(ω)X∗j (ω)|−1 is commonly
used. It is motivated by the fact that a pure time delay results in a phase shift
and leaves the signals amplitude unchanged. Hence, it is a simple whitening
of the cross-spectrum. Despite its solely heuristic nature, PHAT as a pre-filter
has shown robustness under moderate reverberation and noise conditions. For
simplicity, we omit some technical details, e.g. a block-processing scheme.

The robustness of SRP-PHAT stems from the spatial combination

P (q) =
∑

(i,j)∈P

Rij(τij(q)) , τij(q) =
|q − pi| − |q − pj |

c
, (2)

of possibly redundant GCCs for pairs (i, j) ∈ P ⊆ {1, . . . ,M}2 using a total of
M microphones. Given a spatial position q and the microphone positions pi,pj

the TDOA leading to q is calculated via τij(q), where c = 343 m s−1 is the speed
of sound and assumed constant. Equation (2) defines a pseudo spatial likelihood
function (SLF) for a source position q. Hence, an estimate for the location of
the dominant acoustic source is given as q̂ = arg maxq P (q).

3.2 Feature Set

The aforementioned ASL system operates on frames of 300 ms. With a sampling
rate of fs = 48 kHz and a frame shift of 150 ms the system estimates up to
seven source positions per second. Each estimate includes the three-dimensional
location q̂ = (x, y, z)T, the SLF value P (q̂) and the speech energy of the cur-
rent signal frame in dB averaged over all acoustic channels. For those five raw
ASL measurements the mean and variance over two second windows (14 raw
ASL samples) are calculated, leading to ten ASL features in total. The window
size is chosen, such that a fair amount of context-relevant speech portions are
considered.

Given those ASL features a sliding window procedure is applied, extracting
frames of fixed lengths l with overlap o = 10 s. Elements of the frame are accu-
mulated, resulting in a ten-dimensional vector which, after mean subtraction, is
normalized element-wise and fed into the classification system.

3.3 Baseline System

In order to compare our approach for context classification based on ASL, we use
a baseline system which utilizes only environmental, non-intrusive sensors [9].
Monitoring the temperature, CO2 content and humidity of the air, luminosity,
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the status of doors and windows, as well as motion in certain regions of the
environment, this system has already proven its capabilities for the given task.
Moreover, this baseline system is integrated in the ASL based context classifica-
tion approach to further improve the results.

3.4 Neural Network Classifier

In order to classify the smart environment’s context based on audio source data
(ASL approach) and sensory information (baseline system), a neural network has
been built. Instead of using rule based ontologies which involves human expert
knowledge, our system is based on statistical learning and can adapt to arbitrary
data. For our experiments a fully connected multi-layer perceptron (MLP) with
sigmoid transfer function as activation has been used [11]. For training purposes
an error back-propagation mechanism has been employed to minimize a square-
error metric.

The network topologies are directly derived from the data. The number of
processing units in the input layer corresponds to the dimensionality of the data,
while the output nodes are assigned to the different context scenarios to be clas-
sified. The neurons in the hidden layer can not be estimated automatically, hence
some trial runs have been conducted in that sense. Considering the audio data, a
10-10-4, while for the environmental sensor data a 15-10-4 topology is applied. In
order to integrate the two classifiers, first the activations of the output neurons
of each network are normalized, i.e. estimates of class posterior probabilities are
obtained. Assuming class independence between the different sensor informa-
tion, combined estimates can be calculated by simple multiplication (right part
of Fig. 1).

4 Evaluation

In order to demonstrate the effectiveness of the presented approach we conducted
a number of practical experiments in a smart conference room. The objective
of the experiments was to evaluate the given approach in a real world setting
during regular usage of this environment.

4.1 Setting

The work described in this paper is part of a greater research project, the
FINCA [13]. This intelligent environment, amongst others, consists of a con-
ference room equipped with a multitude of ambient sensors, microphones and
cameras. Figure 2a gives an overview of the sensor setup in general. Sixteen mi-
crophones grouped in two distributed ceiling-mounted arrays are employed for
ASL. A visualization of the SLF (2) for an arbitrary time instance as used for
the ASL approach is shown in Fig. 2b. The location of the audio source is ap-
proximately the center of the high energy area (dark spot in the two-dimensional
map).
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(a) Configuration of acoustic and ambi-
ent sensors.

(b) SLF P (q) evaluated over
the two-dimensional FINCA
grid.

Fig. 2: The smart conference room of the FINCA.

4.2 Data Set and Methodology

Sensor data was recorded over a time period of several months with multiple
recording sessions for each situation. The final data set consists of four situations
that are typically related to meeting rooms.

Meeting: Team meeting, using possibly the white-board for collaborative tasks
(122 minutes of data)

Presentation: A talk given by one person while slides are projected on the
white-board. (107 minutes of data)

Discussion: Questions from the audience after a given presentation. (67 min-
utes of data)

Coffee break: Coffee break between subsequent presentations and meetings.
(45 minutes of data)

Regarding the acoustic sensor information, separating these classes is a chal-
lenging task as audio events occur rather widespread throughout the different
situations. Figure 3 visualizes the localization results for exemplarily selected,
complete recording sessions. Note that for the classification only short time pe-
riods of such sensor data, i.e. several seconds, are used. Moreover, not the raw
coordinates as plotted in Fig. 3, but the more general statistics are utilized.
Hence, not the positions of speakers are learned by the classification system, but
the patterns of interaction between multiple persons.

A five-fold cross-validation was performed for training, parameter optimiza-
tion and final testing. The dataset was subdivided into five disjoint sets. Training
was performed using three fifths of the sets, validation of the MLP on the fourth,
and final testing on the remaining set. Final results were obtained by averaging
over the results achieved for every such configuration. To account for practical
applicability, no effort was taken to manually adjust the data set. For training,
classes were automatically balanced by data duplication, whereas the validation
and test procedure was run on the unmodified and unbalanced set.

The experiments were designed to analyze the classification performance for
ASL based context classification, the baseline system and the combined approach
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(a) Meeting (61 minutes) (b) Presentation (32 minutes)

(c) Discussion (46 minutes) (d) Coffee Break (22 minutes)

Fig. 3: ASL results for different exemplarily selected audio recordings.

for different window sizes. Moreover, a reduced feature set was tested to investi-
gate the ability of the system to learn interaction patterns apart from any spatial
position. As stated above, only derived statistics are used by the classifier, not
the raw speaker locations. However, the mean value of x,y and z-coordinates
over all audio events within a specific frame – i.e. the center of audio activity in
the environment at the given time – is regarded. In contrast, the reduced feature
set discards this location specific information.

4.3 Results

Figure 4 (left part) shows the classification results for the different classification
systems and window sizes. The ASL based approach outperforms the baseline
system and reaches a classification rate of 84.5 % at window size l = 90 seconds,
while the others best performance is 72.3 % at l = 60 seconds. Combining the
two further improves the performance and the overall best of 91.5 % is achieved
for l = 90 seconds. The corresponding confusion matrix and class accuracies
are presented in Fig. 4 (right part). While the classes meeting (M), presenta-
tion (P) and coffee break (C) are classified correctly with rates lager 90 % the
class accuracy of discussion (D) only achieves 80.8 % caused by the confusion
with the class presentation. This can be explained by the similarity between the
two situations, i.e. the former presenter might still be the main speaker when
answering questions of the audience in detail.

The effect of the window size can be explained with the increasing amount
of context information encoded into a frame which positively affects the clas-
sification. However, the smoothing characteristic of the framing decreases the
performance for larger l. The perfect parameter value depends on the feature set
and differs between the ASL approach and the baseline system.
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Fig. 5: Classification results for reduced ASL feature sets. Left part: Discarding
mean of x, y and combined ; Right part: Additionally discarding mean
of z and combined . In comparison to the results presented in Fig. 4.

Results on the reduced feature set (discarding mean values of x and y-
coordinates) in comparison to the former are illustrated in Fig. 5 (left part).
While the ASL based classification decreases slightly (83.1 %), the combined
performance remains on the same level. In contrast, additionally discarding the
mean of z, dramatically reduces the classification rates (57.5 % ASL, 73.4 % com-
bined)(Fig. 5, right part). These findings show the capability of our approach to
learn interaction patterns independent of the location of speakers. However, the
spatial height of a localized audio source, e.g. whether different interaction part-
ners are sitting or standing, has a great impact on the classification performance
of our system and must be regarded for the given task.
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5 Conclusion

In this paper we presented a system for context classification in smart envi-
ronments. The proposed system is the first which utilizes acoustic information
about human interaction patterns for this task. Without any prior knowledge a
neural network classifier learns acoustic source localization patterns which are
typical for specific contexts. Results of experiments in a smart conference room
equipped with multiple microphones showed improved performance compared
to a baseline system relying on environmental sensors. The integration of both
information sources even increased the classification performance to 91.5 % in a
demanding, real world scenario.
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