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ABSTRACT

In this paper the application of uncertainty modeling to con-
volutional neural networks is evaluated. A novel method for
adjusting the network’s predictions based on uncertainty in-
formation is introduced. This allows the network to be either
optimistic or pessimistic in it’s prediction scores. The pro-
posed method builds on the idea of applying dropout at test
time and sampling a predictive mean and variance from the
network’s output. Besides the methodological aspects, imple-
mentation details allowing for a fast evaluation are presented.
In the evaluation on the ILSVRC2014 and VOC2011 datasets
it will be shown that modeling uncertainty allows for improv-
ing the performance of a given model purely at test time with-
out any further training steps.

Index Terms— Deep Neural Networks, Dropout, Output
Modeling

1. INTRODUCTION

Convolutional neural networks (CNNs) show state-of-the-
art results in many computer vision applications. Their usage
includes scene [1] and object classification [2, 3], object de-
tection [4], scene parsing [5], face recognition [6], medical
imaging [7] and many more. Lately, their applications even
extended to non-vision tasks like the recognition of acoustic
scenes [8] or activity recognition [9].

While CNNs work well in practice, it has been shown that
they are typically over-confident in their predictions [10]. It
is possible to generate arbitrary images that are nevertheless
classified with high scores after the softmax computation at
the network’s output layer. There is no measure of uncertainty
associated with their output. Compared to many traditional
pattern recognition approaches, this is a major shortcoming
[11, 12]. The most prominent example are Bayesian models
[11]. A typical approach is, for example, model averaging
where predictions are made by a set of plausible models and
their predictions are integrated into a single representative one
[11, 13]. This allows for computing uncertainty based on a
predictive mean and variance. Uncertainty is often similarly
modeled in regression tasks. Bayesian approaches and also
Support Vector Regressors allow for computing confidence
bands based on a variance estimation [12, 14] which results
in an interval around the regressed values.

The issue of uncertainty modeling for Deep Neural Net-
works has recently been addressed in [15, 16]. In [16] it is
argued that applying dropout resembles the training of a set
of different network models. Dropout is a mechanism that
is frequently used at training time in order to avoid overfitting
[17]. A random set of neurons is dropped from the network so
that multiple paths through the network are learned. This can
also be thought of as learning an ensemble of different classi-
fiers that are based on different combinations of neurons. The
number of classifiers in the ensemble is exponential in the
number of neurons and all networks make use of heavy pa-
rameter sharing [17]. In [16] it is further argued that a forward
pass through the network in which the weights are divided by
two is an approximation of model averaging for multilayer
perceptrons. This approach is then combined with maxout
neurons. A maxout neuron simply returns the maximum acti-
vation from a set of inputs. A maxout network learns to have
roughly the same output regardless which inputs are dropped
and, therefore, interacts well with the dropout paradigm.

In [15] a similar approach has been introduced. A connec-
tion has been drawn between deep neural networks and Gaus-
sian processes [18]. Without changing the neural network, it
can be shown that applying dropout to each layer can theo-
retically be interpreted as a Bayesian approximation of Gaus-
sian processes. Thus, a predictive mean and variance can be
computed from the results of multiple forward passes through
the network where different neurons are dropped which then
allows for associating uncertainty with the network’s output.
The computed predictive mean is basically another approach
to model averaging [11] and improves the performance com-
pared to the implicit model averaging that is performed by
computing a single forward pass.

The contribution of this paper is an extension of the the-
oretical model provided in [15]. Based on this theoretical
model, optimistic or pessimistic network behavior is defined.
Implementation details, providing a fast evaluation of neural
networks under the given model are shown. An evaluation on
two object recognition tasks, namely the ILSVRC2014 and
the VOC2011 dataset, is provided.

2. REVIEW OF TEST DROPOUT

In the following section the idea presented in [15] is briefly
reviewed. It has been shown that a deep neural network with
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Fig. 1. Overview of the proposed architecture. The convolution layers of the CNN are evaluated in a single forward pass,
computing the input features for the fully connected part. Multiple passes through the fully connected part using dropout are
then used for computing a robust prediction.

dropout applied before every weight layer is mathematically
equivalent to an approximation of a deep Gaussian process.
This model allows for the computation of a predictive mean
and variance.

Let W j
i be a binary variable for the ith node in layer j.

Each binary variable takes the value 1 with probability pj for
the network’s layer j. It is dropped out if the binary variable
is set to 0. Given T repetitions and J layers, a random set
of variables ωt = {W }Ji is randomly drawn for each repe-
tition t. For the input value x and the prediction ŷt(x, ωt) at
repetition t, the predictive mean

E(y) ≈ τ−1IC +
1

T

T∑
t=1

ŷt(x, ωt) (1)

and predictive variance

V ar(y) ≈ τ−1IC +

1

T

T∑
t=1

ŷt(x, ωt)
T ŷt(x, ωt)− E(y)TE(y) (2)

can be computed with IC denoting a vector of ones of length
C, which equals the number of classes at the output layer of
the network. Furthermore, the standard deviation is denoted
by σ(y) =

√
V ar(y). In this formulation τ refers to the

model precision:

τ =
pl2

2Nλ
(3)

with λ being the weight-decay parameter, l being the prior
length scale, N being the number of the input samples and
p being the inverse of the dropout probability of the network
(c.f. [15]). This reasoning can be applied to every neural net-
work using standard dropout.

3. OPTIMISTIC AND PESSIMISTIC NETWORKS

Following this theoretical model, a novel modeling of net-
work behavior is proposed. Using confidence intervals, a
neural network can either be optimistic or pessimistic in its
predictions, as illustrated in Fig. 1.

3.1. Confidence Intervals

Under the assumption that the output of a deep Gaussian pro-
cess and, therefore, the output of the neural network is normal
distributed, it is possible to compute a confidence interval for
the predictions based on the mean and standard deviation:

[E(y)− z1−α
2

σ(y)√
T

; E(y) + z1−α
2

σ(y)√
T

] (4)

with z1−α
2

being the 1 − α/2 quantile of the normal distri-
bution. Choosing an appropriate value for α, a confidence
interval can be derived (i.e. for 99% certainty, α = 0.01).

Note that given the mean and variance, i.e. from a vali-
dation set, a guaranteed confidence interval can be computed
based on the number of runs T :

T =

(
z(1−α

2 )
σ(y)

E(y)

)2

. (5)

Adjusting the parameter T , it can be said that the performance
of the model will be within the respective confidence interval
with a probability of α.

3.2. Definition of Optimistic and Pessimistic Behavior

The result that is obtained from computing the confidence in-
terval provides an upper and lower bound for the prediction
which is dependent on the confidence level. Hence, the true
mean is between these bounds with probability 1− α/2. The
goal is to use this information in order to improve the results
of a convolutional neural network.

While using dropout and computing the predictive mean
should already be more robust than a single pass through the
network (cf. [19]), it does not consider the variance that is
obtained from scoring the sample multiple times. Given two
samples x1 and x2 with the same mean but different confi-
dence intervals it can be argued that one should be scored bet-
ter than the other. This gives rise to optimistic or pessimistic
network behavior, which is defined by

Eo(y) = E(y) + z1−α
2

σ(y)√
T

and (6)

Ep(y) = E(y)− z1−α
2

σ(y)√
T

(7)
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respectively. By reasoning that dropout models an ensem-
ble, which is generated by multiple paths through the network
[17], the two behaviors can be compared to a decision rule of
ensemble classifiers such as the maximum rule (c.f. [20]).
The optimistic behavior gives more weight to the numerically
larger output of the network. This is essentially a bias toward
a minority of votes in the ensemble determining neurons in
the output layer to be active. The pessimistic formulation fa-
vors a minority of votes which are in favor of a neuron in the
output layer being inactive and thus to numerically smaller
values. In the experiments it will be shown that modifying
the network to output a more optimistic or more pessimistic
score can improve the results.

3.3. Fast Optimistic and Pessimistic Networks

Theoretically, processing T forward passes would come at a
T times higher computation time. Although in practice paral-
lelization using a larger batch size allows for a slightly faster
processing, the increased computational cost makes this ap-
proach unsuitable for many practical applications.

In typical CNN architectures dropout is only applied dur-
ing training and most classification networks restrict them-
selves to dropout in the last weight layers in order to avoid
overfitting [2, 3]. Modeling this for the sampling at test time
can be used as an advantage. Following the idea of [4] it is
assumed that the network consists of two parts: The first part
is a fixed set of convolution layers. The activations of these
layers are considered as an intermediate feature representa-
tion and fixed for a given input image. The second part is the
neural network using dropout. The resulting architecture is il-
lustrated in Fig. 1. The convolutions are computed in a single
forward pass, then T passes through the fully connected part
are computed. The dropout value for each of the j layers of
the deep neural network is set to a single value pdrop.

4. EVALUATION

The goal of the evaluation is to show the performance im-
provement that is achieved by evaluating the same models
using dropout at test time. A single forward pass without
dropout is compared with multiple passes using dropout and
computing a predictive mean or the output of the proposed op-
timistic or pessimistic network behavior. No additional train-
ing step is performed. The evaluation is performed on the
ILSVRC2014 object classification task and the VOC2011 ob-
ject prediction task using a VGG16 network architecture.

4.1. ILSVRC 2014

The publicly available VGG16 model [3] has been evaluated
as a baseline on the validation set of the ILSVRC2014 clas-
sification task [21]. Dropout is applied to the first two fully
connected layers (fc-6 and fc-7). In [3] multiple crops which

Network T pdrop top-1 top-3 top-5
error error error

VGG16 (*) [3] - - 28.6% 13.9% 10.1%
Mean 10 0.1 27.1% 12.5% 8.8%
Optimistic 10 0.1 27.3% 12.6% 8.9%
Pessimistic 10 0.1 27.2% 12.9% 9.4%
Mean 100 0.1 27.1% 12.5% 8.9%
Optimistic 100 0.1 27.1% 12.6% 8.9%
Pessimistic 100 0.1 27.1% 12.5% 8.9%
Mean 10 0.5 27.2% 12.8% 9.0%
Optimistic 10 0.5 27.3% 13.1% 9.3%
Pessimistic 10 0.5 27.6% 17.7% 16.5%
Mean 100 0.5 26.9% 12.4% 8.8%
Optimistic 100 0.5 26.9% 12.5% 8.9%
Pessimistic 100 0.5 26.8% 12.4% 8.8%

Table 1. Error rates for different values of T and pdrop on the
ILSVRC 2014 classification on the validation set. (*) Results
were re-evaluated using the publicly available model.

are extracted at different image scales are evaluated by the
CNN. Moreover, the crops are larger than the CNNs input
size and then densely evaluated by reshaping the fully con-
nected layers to 7 × 7 and 1 × 1 convolution layers. The
authors stated that extracting multiple crops at different im-
age scales only slightly improves the performance (150 crops
from multiple scales improved the accuracy by 1.3%), but at
the cost of a much higher computation time [3]. This evalua-
tion is therefore omitted. Still the dense evaluation at a single
scale of 256px (shortest side length) is performed. Instead of
using the average, the maximum activation after each of the
softmax computations from the dense sampling is used.

The network has then been evaluated using the mean, op-
timistic and pessimistic behavior with different parameters for
pdrop and T . These parameters are chosen empirically for the
experiments. The error rates for the top k results are shown in
Tab. 1. The top-1 error rate can be improved by 1.8% and the
top-5 error rate can be improved by 1.3% compared to a single
forward pass. However, there is not much difference between
the different network behaviors for this task. A permutation
tests (cf. [22]) for top-1, top-3 and top-5 error showed a highly
significant difference between all of the pessimistic net’s re-
sults and the baseline results with a p-value of p < 0.01 each.

Not surprisingly the results converge when increasing the
number of runs T . Note that with a higher dropout value pdrop
the number of runs T that are required to improve the result
increases. This can be explained by the fact that the variance
will be increased the more information is dropped from the
model. Overall the results are improved when using a higher
dropout ratio. A crucial point is that this improved perfor-
mance comes at the cost of a higher runtime. Therefore, the
computation time for T passes through the network has been
evaluated with the results shown in Fig. 2. The fast architec-
ture is compared with a naive approach computing T forward
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Fig. 2. Computation time in ms on the ILSVRC2014 bench-
mark on a TitanX using dense sampling with mirroring and
a scale size of 256. The runtime in relation to the sampling
parameter T is evaluated.

passes through the complete network. Note that the computa-
tional overhead created by dropout is neglectable. While the
naive approach is almost linear in time, the computation time
can be reduced by a large margin when evaluating the fast
implementation that pre-computes the filter responses.

4.2. VOC2011 - Multiclass prediction

On the VOC2011 dataset the presence of multiple objects in
a scene is predicted [23]. Therefore, a fully convolutional
VGG16 multilabel architecture has been evaluated. The fully
connected layers of the VGG16 architecture have been re-
placed by two 3 × 3 convolution layers, one layer with 512
filters and one layer with exactly one filter per object class.
Dropout is applied to the first of these convolution layers. The
convolution layers are then followed by a global max pooling.
Instead of predicting one label with a softmax layer, a sig-
moid layer is used in order to simultaneously derive pseudo-
probabilities for all object classes. The training is performed
by computing the cross entropy loss [24]. The filter functions
are pre-trained on ImageNet and the presence prediction is
then trained on the VOC2011 training set. 500 000 samples
have been created using data augmentation, including Gaus-
sian noise (σ = 0.02), random translations (up to 5%) and
rotations (up to≤ 10◦). A batch size of 256 has been used for
training with 2 000 iterations using a learning rate of 10−3.
The learning rate has then been reduced to 10−4 computing
2 000 more iterations. The images from the VOC2011 dataset
have been re-scaled so that the shortest side has a length of
512px. Note that this is a rather large image size compared
to many other tasks [2, 3]. As the network is fully convolu-
tional this image size is beneficial since the objects are larger
in terms of the absolute surface area and can be detected more
easily by the large receptive field of the network’s filters.

The mAP over all classes is computed and the results are
shown in Tab. 2. As the predictions are evaluated indepen-
dently of each other (i.e. two classes can be predicted with a
probability of one), the proposed behavior modeling has more
influence than in case of a softmax classifier. Also, the mAP

Network T pdrop mAP
Multiclass baseline - - 72.8%
Optimistic 100 0.5 75.3%
Mean 100 0.5 74.8%
Pessimistic 100 0.5 74.6%

Table 2. Mean average precision for the presence prediction
on the VOC2011 dataset.

is evaluated based on varying thresholds for each of the 20
classes in the VOC dataset. As a result, the influence of the
different network behaviors is clearly visible. The mAP can
be improved by up to 1% when using an optimistic behavior
instead of the predictive mean and by 2.5% compared to the
plain evaluation.

4.3. Discussion

Both of the networks use a maximum pooling in the final
layer. The ILSVRC network pools the maximum response
of the dense sampling and the VOC multilabel architecture
has a pooling layer that is applied after the convolution lay-
ers. It is worth noting that these are important design deci-
sions when applying dropout. This also confirms the findings
in [16] where it is argued that maxout layers and dropout in
training interact well. A reason is that applying average pool-
ing smooths the differences that are generated by choosing
different paths through the network.

5. CONCLUSION

In this paper the application of uncertainty modeling
to convolutional neural networks has been evaluated. The
proposed method builds on the idea of applying dropout at
test time and sampling a predictive mean and variance from
the network’s output which in turn also allows for adjusting
the networks predictions to be more optimistic or more pes-
simistic. In general the proposed method can be compared
to evaluating an ensemble classifier within a single network
architecture with the different behaviors representing differ-
ent decision rules. It could be shown that the results of a
given model can be improved for object recognition tasks on
the ILSVRC2014 and VOC2011 dataset1. On the VOC2011
dataset the results for predicting the presence of multiple ob-
jects at a time can be improved by as much as 2.5% using an
optimistic evaluation scheme and dropout at test time without
any further training.
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