
Deep Neural Network based Human Activity Recognition for
the Order Picking Process

Rene Grzeszick, Jan Marius Lenk,
Fernando Moya Rueda, Gernot A. Fink

Department of Computer Science, TU Dortmund
University

Dortmund, Germany
(rene.grzeszick,jan-marius.lenk,fernando.moya,

gernot.fink)@tu-dortmund.de

Sascha Feldhorst,
Michael ten Hompel

Fraunhofer IML / Department of Mechanical
Engineering, TU Dortmund University

Dortmund, Germany
(sascha.feldhorst,michael.ten.hompel)

@iml.fraunhofer.de

ABSTRACT
Although the fourth industrial revolution is already in
pro-gress and advances have been made in automating
factories, completely automated facilities are still far in
the future. Human work is still an important factor in
many factories and warehouses, especially in the field of
logistics. Manual processes are, therefore, often subject to
optimization efforts. In order to aid these optimization efforts,
methods like human activity recognition (HAR) became of
increasing interest in industrial settings. In this work a novel
deep neural network architecture for HAR is introduced. A
convolutional neural network (CNN), which employs temporal
convolutions, is applied to the sequential data of multiple
intertial measurement units (IMUs). The network is designed
to separately handle different sensor values and IMUs, joining
the information step-by-step within the architecture. An
evaluation is performed using data from the order picking
process recorded in two different warehouses. The influence
of different design choices in the network architecture, as well
as pre- and post-processing, will be evaluated. Crucial steps
for learning a good classification network for the task of HAR
in a complex industrial setting will be shown. Ultimately, it
can be shown that traditional approaches based on statistical
features as well as recent CNN architectures are outperformed.
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INTRODUCTION
With the beginning of the fourth industrial revolution, many
researchers expect Cyber-Physical Systems (CPS) to signifi-
cantly change industrial processes, the way they are controlled
and also their automation [15]. Nevertheless, human work will
remain an important part of the industrial systems of the future.
Completely automated factories and distribution centers are
neither technologically nor economically reasonable. Espe-
cially in the field of logistics, where processes change rapidly
and various tasks are performed by a worker, automation is
difficult or simply not economically feasible. For instance,
the order picking process, where a list of items is collected
in a warehouse, is often done manually. In huge warehouses
like the ones operated by Amazon or Zalando, hundreds of
people are working simultaneously in order to deliver articles
to customers in the shortest time possible. Thus, in high-wage
countries in central Europe or north America, human work is a
significant cost driver. It is therefore often subject of optimiza-
tion efforts [11]. Many different technologies and approaches
were developed in order to improve the efficiency of the man-
ual order picking process [6]. However, for all optimization
approaches a deep understanding of the manual steps within
the process is a crucial requirement. In order to understand
these manual processes, manual analysis (REFA) or time es-
timates (Methods-Time Measurement; MTM) are frequently
used [8]. Recently, it was proposed to use methods of human
activity recognition (HAR) for collecting and analyzing re-
alistic data from manual processes [4]. In HAR, body-worn
sensors record human activities and the data is subsequently
analyzed. Frequently, intertial measurement units (IMUs) that
contain an accelerometer, gyroscope and magnetometer are
used. While most of these tasks deal with basic movements
such as walking, jogging, driving or cycling, an industrial
setting is much more challenging. The activities in industrial
processes often consists of complex movements and require a
high flexibility. For example, the picking or boxing of articles
with different sizes, shapes and weights may show a great
intra-class and especially inter-person variability. Similarly,
different technical artifacts are handled by the workers. This
variability is very challenging for HAR.
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Traditional approaches to HAR rely on statistical features in
a sliding window approach [2, 10]. These are then processed
by a classifier, e.g., an SVM, a Random Forest or a sequence
based approach such as dynamic time warping (DTW) or a
Hidden Markov Model (HMM). Typically, statistical features
such as mean, median, min, max or the signal magnitude area
are computed for each sensor signal (i.e. for accelerometer x,y
and z separately). These features are often complemented by
features computed on the derivative of the signal or in some
cases by a correlation analysis between different signals [10].
The design or choice of statistical features is often a difficult
process, due to the large intra-class and inter-person variabil-
ities in HAR [7], but also due to the abstract nature of the
sensor data. Nevertheless, a broad choice of these features
tends to work comparably well, especially since learning fea-
tures also poses a difficult task as the activity data is often
scarce and also highly unbalanced [2]. In most tasks, there
are a few dominant classes while several activities occur only
infrequently.

A traditional approach has recently been applied to analyzing
the order picking process in [4]. Three IMUs were used in
order to analyze the activities within the order picking pro-
cess. An evaluation of different classifiers in a sliding window
setup has been performed using a set of handcrafted statis-
tical features. The experiments were performed with data
from two different warehouses and different workers, showing
promising results.

More recently, approaches based on deep neural networks
(DNNs) were also picked up in the field of HAR [12, 16].
These allow for learning features in conjunction with a clas-
sifier. In [12] and [16] CNN architectures that are applied in
a sliding window framework are proposed. The CNNs use
temporal convolutions which are applied over a fixed num-
ber of frames, i.e. 3 to 15 sensor values. While in [16] it
is suggested to apply the convolutions for each sensor signal
separately, in [12] the convolutions are applied over all sensor
values simultaneously. The first approach handles the infor-
mation of each sensor signal independently until the first fully
connected layer. The fully connected layer then models the
correlations between different sensor signal at feature level, i.e.
movement in x and y direction. The second approach directly
considers correlations between sensor signals at the first con-
volution. These CNN approaches outperform the traditional
approaches for HAR. However, the traditional methods are
not outperformed by a large margin as, for example, in the
audio or most prominently the visual domain [13]. Note that
both architectures are comparably shallow with up to three
convolution layers, intermediate pooling layers and a single
fully connected layer for classification.

A more extensive comparison of traditional methods and dif-
ferent neural networks is given in [5]. DNNs, CNNs and
recurrent neural networks (RNNs) are compared on various
tasks, ranging from every-day activities to more complex tasks.
For the CNN the approach of [12] is followed, computing a
convolution over all sensor values. For the RNNs, a long
short-term memory (LSTM) as well as a bi-directional long
short-term memory (B-LSTM) have been implemented. Both
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Figure 1. Overview of the proposed approach using an example of three
IMUs worn by a worker at both wrists and the torso.

evaluate the signal in a frame-wise fashion. While the best
performance has been achieved using the B-LSTM, most sur-
prisingly a similar accuracy has been achieved by the CNN,
which is applied in a sliding window. Furthermore, it is shown
that the performance of the CNN is more robust to parameter
changes, making the training of the network more easy.

Following up on the conclusions in [5], a CNN architecture
for analyzing the order picking process is proposed. The
contribution of this paper is two-fold: 1) The application
of a deep neural network to the task of HAR in an order
picking scenario is shown. 2) A novel network architecture
that is IMU centered is introduced and compared to traditional
methods based on statistical features as well as a recent CNN
architecture.

The approach is evaluated on the dataset introduced in [4].
The effect of design choices in the network architecture, as
well as pre-processing in the form of data augmentation and
post-processing will be studied. It will be shown that the
proposed CNN outperforms the traditional approach presented
in [4] and that the novel IMU based architecture is able to
improve the results compared to recent CNN architectures as,
for example, discussed in [12, 5].

METHOD
The presented approach builds on a sensor setup where mul-
tiple IMUs are worn by a worker. An overview based on an
example with three IMUs is given in Fig. 1. Each IMU records
data from multiple sensors, i.e., accelerometer, gyroscope and
magnetometer in x,y and z direction at a given Hz rate. The
resulting sensor data is, therefore, a time series with multiple
dimensions (3×9 values for the sensors described above). The
sensors are synchronized at the beginning of every recording
and then a sliding window is applied to the sensor data. Each
sliding window contains multiple frames and is processed by
a CNN in order to recognize different human activities. The
output is a labeled sequence of human activities.
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Figure 2. Overview of the proposed IMU-CNN architecture. First, the
data of each IMU is processed independently and then the information
is joined in a fully connected layer. In the last layer of size c (= number
of classes), a softmax classification is performed (best viewed in color).

Data Augmentation and Class Imbalance
For training the CNN, all possible windows are extracted from
a set of training sequences. Thus, a sliding window of size w
is moved forward one frame at a time. As a result for each
event in a training sequence multiple windows representing
the activity are extracted. Although the information in these
is highly redundant, the small frame-shift allows to generate
a large number of samples, which is important for training a
CNN.

As the sensor data is not invariant to most augmentations, such
as mirroring, offsets or mixing two classes, two data augmen-
tation strategies are proposed. First, Gaussian noise has been
added to the sampling values, which simulates inaccuracies
in the sensor’s sampling. This is also a standard approach for
data augmentation [9, 14]. Second, the sensor values within a
given window are randomly re-sampled. New values between
each two samples are computed. A random number r ∈ [0,1]
is drawn and the point at time r between the two values is
approximated using interpolation. Given the fast sampling
rate in relation to often relatively long activities of multiple
seconds, this augmentation preserves the coarse structure of
the data, but a random time jitter in the sensor’s sampling
process is simulated.

During the data augmentation process, the imbalance issue is
tackled by creating a larger number of augmented samples for
the under represented classes. The samples are re-balanced
such that each class has at least b percent of the largest number
of samples per class in the training set.

IMU CNN
The proposed architecture builds on the idea of processing the
data of multiple IMUs separately. An overview of the network
is given in Fig. 2. Having multiple parallel processing blocks
within the network, it roughly follows the idea of wider rather

than deeper networks [17]. Here, each parallel block has a
logical meaning as it represents the data of a single IMU. In
theory, this abstraction should also allow for more robustness
against the IMUs being slightly asynchronous.

To cope with different types of signals, i.e., accelerometer, gy-
roscope and magnetomer, that have different value ranges, the
sensor values are processed by a batch normalization. The data
is thus normalized to have zero mean and unit variance. The
normalized data of each of the IMUs is processed by multiple
convolutions and subsequent pooling operations. Following
the approach of [16], each channel is separately processed by
a temporal convolution. The temporal convolutions of each
IMU share their weights. Instead of increasing the size of
the temporal convolutions, two 5×1 convolutions are stacked
and followed by a subsequent 2× 1 max pooling. Two of
these blocks are combined so that the network has a total size
of four convolutional layers. Instead of scaling the network
deeper, these layers are processed in parallel for each IMU,
increasing the networks descriptiveness. From the resulting
feature maps, an intermediate representation is computed for
each of the IMUs by a fully connected layer. The intermediate
representations are then concatenated by a subsequent fully
connected layer that has a global view on the data and one
fully connected layer of size c, representing a score for each
of the classes. Dropout is applied to all fully connected layers,
except the classification layer. As only one activity is consid-
ered to be present at each point of time, a softmax is used for
deriving pseudo-probabilities from the c class scores. Thus, a
softmax loss is used for training the network.

EVALUATION
The evaluation is performed on the dataset introduced in [4].
The proposed algorithm is evaluated with respect to its classi-
fication accuracy in an order picking setup and compared to
both, traditional and recent CNN approaches.

A baseline system is evaluated using statistical features as
described in [4]. A set of features, namely min, max, avgerage
and standard deviation, is computed within a short time win-
dow separately for each signal. All features are concatenated
into one feature vector representing the time window. This
feature vector is then used as input for a classifier in order to
predict an activity class. Here, three different classifiers are
compared. On the one hand, a generative model is evaluated
in the form of a Bayes classifier. On the other hand two dis-
criminative approaches, a Random Forest and a linear SVM,
are also evaluated.

For comparison with the proposed IMU-CNN architecture, a
CNN baseline architecture is also evaluated. Following the
architecture design presented in [5], a CNN with a global
temporal convolution over all sensor values is used. This
architecture is referred to as the activity CNN. Here, the same
structure of 5× 1 convolutions and max pooling operations
as for the proposed IMU-CNN are implemented, which are
then followed by three fully connected layers. The sizes of
the layers are also chosen according to the proposed IMU-
CNN architecture which is larger than the design proposed in
[5]. As an intermediate step between the proposed IMU-CNN
architecture and the activity CNN, an IMU-CNN with a global



activity class warehouse A warehouse B
walking 21465 32904
searching 344 1776
picking 9776 33359
scanning 0 6473
info 4156 19602
carrying 1984 0
acknowledge 5792 0
Unknown 1388 264
flip 1900 2933

Table 1. Overview of the dataset and number of frames for each of the
activity classes in the different parts of the dataset.

temporal convolution is evaluated. Thus, a convolution over
all sensor values is computed for each IMU separately. This
architecture is referred to as IMU-global.

Order Picking Dataset
The data consist of two sets. Each of these sets contains
recordings from three persons in two different warehouses,
denoted as A and B. While the proposed approach is applicable
to an arbitrary number of IMUs, the recording in the order
picking setup has been restricted to three IMUs. In contrast
to many setups which have been recorded in a controlled
environment [1, 3], the number of sensors has been restricted
in order to not interfere with the actual work. As shown in
the example in Fig. 1, these were located at both wrists and
an additional sensor at the torso. The IMUs collect data at a
rate of 100Hz, using data from the accelerometer, gyroscope
and magnetometer. Thus, in total there are 3×9 = 27 sensor
values.

A cross-validation is performed so that two persons are used
for training and one for testing. In total, the recordings con-
tain 10 min and 23.30 min of data for warehouse A and B
respectively. There are seven foreground classes in the dataset:
walking, searching, picking (i.e. taking an order from a shelf),
scanning, info (i.e. interaction with a paper list or a handheld),
carrying and acknowledge (i.e. signing on a paper list) as well
as two background classes unknown and a sensor flip (which
has been used for synchronization and marking the beginning
and end of an order line). Some parts of the dataset have been
annotated with NULL and are excluded from the analysis.
Out of the original recordings there are 54,079 frames which
equals ≈ 9.01 min labeled data for warehouse A and 99,941
frames which equals ≈ 16.39 min labeled data for warehouse
B. An overview is given in Tab. 1. It can be seen that the data
is highly imbalanced and that not all classes are used in both
parts of the dataset. Warehouse A requires interaction with a
paper list for guiding the workers. This activity is annotated as
info. This part of the dataset also has an acknowledge activity,
where the list is signed manually. Warehouse B on the other
hand used a handheld device for guiding the worker such that
the info activity is represented by interacting with the hand-
held device. The acknowledge activity is therefore replaced
by scanning.

In [4], the evaluation has been performed purely in a clas-
sification setup where windows of varying sizes have been

extracted from the data. Each window has been assigned the
ground truth label that covers the largest number of frames
within the window. The windows are then classified and the
results have been reported for various classifiers and window
sizes. For an optimal choice of classifiers and window sizes,
classification rates of as high as 72.6% and 85.6% have been
reported on set A and B respectively. Note that this setup could
potentially suppress events which are much shorter than the
window length.

The setup used in this work is more precise and in general
capable of online processing. Choosing a fixed window size
of w = 1 sec, the sliding window is moved forward one frame
at a time (10ms). For training and evaluation, each window is
assigned the label at its center. Thus, a slight context of the
past and future is available, resulting in a processing delay of
approx. w/2 sec.

Implementation details
All networks have been trained on the data from two per-
sons. Additional data augmentation has been performed, as
described in the method section. Gaussian noise with σ = 0.01
has been added to the data, as well as the proposed random
re-sampling. The class imbalance has been reduced so that
each class contains at least b = 20% of the largest classes
number of samples.

For training the network, stochastic gradient descent with mo-
mentum has been used. The initial learning rate has been set to
10−5 with a momentum of 0.9. 2,000 training iterations with
a batch size of 50 have been performed, so that the network
uses 100,000 augmented samples for training. Having a very
limited number of original samples, it could be observed that
more iterations lead to overfitting. The learning rate is reduced
by a factor of 10 after 1,000 iterations.

Warehouse A
The results for warehouse A are shown in Tab. 2. The left side
of the table shows the traditional approaches using statistical
features. The right side shows the CNN approaches: the
activity CNN from [5], the proposed IMU architecture and
IMU-global for the intermediate architecture with a global
temporal convolution per IMU in the first layer.

Three observations can be made from the data: First, the tradi-
tional approaches are outperformed by the CNNs. However,
similar to several results in HAR, not always by a large margin.
In contrast, the activity CNN baseline, shows a similar perfor-
mance as statistical features in combination with a linear SVM.
Most interestingly, the generative Bayes classifier outperforms
all discriminative models on the third fold of the dataset. Sec-
ond, it can be observed that the IMU-CNN is able to learn the
data more accurately and ultimately obtains a better classifica-
tion accuracy. It can be assumed that learning different feature
representations for each sensor signal and later in the network
for each of the IMUs is an advantage compared to a global rep-
resentation. Third, when comparing the proposed IMU-CNN
architecture to the IMU-global architecture, where the first
convolution considers all channels at once, it can be seen that
joining the information of the individual sensor values later in
the CNN is beneficial.



statistical features CNNs
Bayes Random Forest SVM linear activity IMU-global IMU

P1 64.8 64.3 66.6 63.9 67.7 70.6
P2 51.3 52.9 60.1 65.5 68.2 70.5
P3 69.9 63.5 64.1 60.1 65.0 66.7

Warehouse A 62.0 ± 7.8 60.2 ± 5.2 63.6 ± 2.6 63.1 ± 2.6 67.0 ± 1.4 69.2 ± 1.8
Table 2. Classification accuracy [%] for warehouse A. (left) statistical features. (right) CNN architectures.

Bayes Random Forest SVM linear activity IMU-global IMU
P1 58.0 49.5 39.7 35.9 48.8 70.1
P2 62.4 70.1 62.8 65.5 65.9 71.3
P3 81.8 79.0 77.2 74.9 73.5 80.3

Warehouse B 67.4 ± 10.3 66.2 ± 12.4 59.9 ± 15.4 58.8 ± 16.6 62.7 ± 10.3 73.9 ± 4.6
Table 3. Classification accuracy [%] for warehouse B. (left) statistical features. (right) CNN architectures.

Context none 50 100 150 200 250
warehouse A 69.2 ± 1.8 70.2 ± 2.2 70.5 ± 2.5 70.8 ± 2.0 71.0 ± 2.0 71.0 ± 2.0
warehouse B 73.9 ± 4.6 74.8 ± 4.2 75.4 ± 3.9 75.9 ± 3.9 76.0 ± 4.0 75.5 ± 3.7

Table 4. Classification accuracy [%] of the IMU-CNN using different context sizes for post-processing the classification results.

Warehouse B
Similar results can be observed on the second part of the
dataset using the recordings from warehouse B. The results
are shown in Tab. 3. Again, the best results are obtained
by the IMU-CNN architecture. However, the other CNN ap-
proaches that consider all sensor values in the first convolution
are outperformed by the traditional approaches. Here, it can
be observed that there is a huge inter person variance between
person one and the other two. Therefore, most approaches
show a poor performance when testing on this data. The gen-
erative model is able to show a better generalization capability
here. This inter person variance also makes it difficult to learn
meaningful filter operations for all sensor values at once. At
a later stage in the network when more abstract features are
learned to represent the single sensor values, the generalization
is more easily possible.

Data Augmentation
Besides the influence of different design choices in the CNN
architecture, it is interesting to study the effect of data augmen-
tation. Therefore, the networks are also trained without any
augmentation using each training sample once. It is known
that class imbalance is often an issue in HAR [2] and neural
networks do easily overfit without proper augmentation. How-
ever, the results in Tab. 5 show that the drop in performance
without augmentation is relatively small. Especially on the
second part of the dataset where more samples are available
for training, there is almost no difference.

Training samples Augm. warehouse A warehouse B
100,000 yes 69.2 ± 1.8 73.9 ± 4.6
33,000-82,000 (*) no 65.9 ± 0.7 73.7 ± 6.1
(*) Number of training samples depends on the warehouse

and train/test split.
Table 5. Classification accuracy [%] of the IMU-CNN using a varying
number of training samples.

Post-processing
In the last experiment, the influence of post-processing is
shown. Typically, sequential data that is processed in a sliding
window approach exhibits noisy labels (cf. [16]). In these
cases, a few single frames within the sequence are incorrectly
classified. Therefore, a simple majority voting is applied
to the labels in a pre-defined neighborhood, smoothing the
classification results. If no majority is achieved, the label
remains unchanged. The results are shown in Tab. 4. While
this requires a contextual knowledge of up to 2.0 seconds, it is
possible to improve the results by 1.8% and 2.1% for the data
from warehouse A and B respectively.

CONCLUSION
In this work, a novel CNN architecture for HAR has been
introduced. The architecture follows an IMU centered design.
Convolutions are applied for each sensor value separately
from which an intermediate representation per IMU is derived.
Ultimately, the features from the different IMUs are joined
in order to derive a global representation, which allows for
classifying human activities. The CNN is integrated in a
sliding window approach for recognizing different classes
in sequential activity data.

The proposed approach has been evaluated for the process
of order picking using realistic data from two different ware-
houses. It has been shown that applying convolutions per
sensor value as well as the IMU centered approach are benefi-
cial for learning a good classifier. Furthermore, the influence
of data augmentation and post-processing the labeled sequence
has been investigated. While data augmentation is able to im-
prove the performance of a network, a good accuracy can still
be reached when using the plain data without any augmenta-
tion. Post-processing the labeled sequence by incorporating
up to two seconds of context improves the results. On both
parts of the dataset, traditional approaches based on statisti-
cal features as well as recent CNN architectures have been
outperformed by the proposed network.
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