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Abstract. The Bag-of-Features principle proved successful in many pat-
tern recognition tasks ranging from document analysis and image classifi-
cation to gesture recognition and even forensic applications. Lately these
methods emerged in the field of acoustic event detection and showed very
promising results. The detection and classification of acoustic events is
an important task for many practical applications like video understand-
ing, surveillance or speech enhancement. In this paper a novel approach
for online acoustic event detection is presented that builds on top of
the Bag-of-Features principle. Features are calculated for all frames in a
given window. Applying the concept of feature augmentation additional
temporal information is encoded in each feature vector. These feature
vectors are then softly quantized so that a Bag-of-Feature representa-
tion is computed. These representations are evaluated by a classifier in
a sliding window approach. The experiments on a challenging indoor
dataset of acoustic events will show that the proposed method yields
state-of-the-art results compared to other online event detection meth-
ods. Furthermore, it will be shown that the temporal feature augmenta-
tion significantly improves the recognition rates.

1 Introduction

The detection and classification of acoustic events is an important task for many
practical applications. In analysis of multimedia content, the classification of
objects, visual actions or movements and sounds can be combined for the un-
derstanding high level semantic events in videos [9]. It is also possible to do this
multimedia event classification based on acoustic features alone [13]. Live appli-
cations include the analysis of acoustic events in various environments. Surveil-
lance in cluttered scenes can be improved by an acoustic analysis in order to
detect unexpected scenarios that are not visually recognizable (e.g. screams or
glass breaking) [2, 5]. Another application is meeting analysis and multi-modal
interaction [20]. A slightly different field are outdoor applications like mobile
robots for security, urban planning [26, 21] or wildlife observations where the
goal is to determine the presence of certain animals by acoustic features [10, 27].
The task is difficult because of the diversity of the acoustic events. A single event
is usually comprised of a variety of individual sounds, e.g. chair movement can
produce knocking and rubbing sounds, handling paper can include rustling and
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knocking on the table and so on. Human laughter or speech are fundamentally
different depending on the individual person. It is desirable for a classification
method of acoustic events to handle these variabilities and generalize from single
instances to the broad range of sounds within an event class.

In order to capture the temporal variability of different sounds, HMMs are
widely used. However, the Viterbi decoding requires a full sequence in order to
predict the past [4]. Consequentially, most HMM approaches work offline and
assign event classes to time points for a past sequence of events. Thus they
commonly only address the task of offline analysis.

There are several methods for online classification and detection of acoustic
events. The basic method is to use a GMM to model each category, as is done in
speaker identification. The mean and variance of the feature vector are modelled
as Gaussians. This is also known as the Bag-of-Frames approach to acoustic
classification [1, 6]. Extensions of this approach include the use of a background
model [24]. Lately, methods that build on the Bag-of-Features principle have
emerged in the field of acoustic event detection [2, 13, 16]. Acoustic features such
as MFCCs are extracted for each frame and clustered in order to build a set
of representatives. The occurrences of these representatives in a short time win-
dow are then counted and the resulting histogram is used for classification. An
very similar approach is the so called superframe, where a histogram over a
pre-classification is used instead [15, 14]. Given the task at hand, these represen-
tatives are often referred to as an audio or acoustic word. One advantage of the
Bag-of-Features models is that due to their simplicity and fast computation it
is easy to employ them for online analysis.

The basic Bag-of-Features approach employs unsupervised hard vector quan-
tization in order to derive a codebook by which to quantize the input [13]. This
strategy is not always optimal for acoustic classification. It is rather advanta-
geous to follow the GMM approach of using soft quantization by assuming a
Gaussian distribution of the feature vectors and perform the training in a su-
pervised manner [16], which is termed Bag-of-Super-Features.

These approaches discard any temporal information within the analysis win-
dow by treating all frames with disregard of temporal order. One way to rein-
troduce temporal information is to use a pyramid scheme [11]. The short time
windows that are used for classification are well suited for a subdivision as pro-
posed by the pyramid scheme [16]. In contrast to the pyramid scheme there are
approaches in computer vision that propose directly including this information
at feature level [8, 17]. This is sometimes referred to as feature augmentation.

In [17] features are augmented with continuous x, y coordinates that encode
the position of a feature within an image. This directly builds on the encoding
abilities of the Fisher Vector approach. Given a set of features, a GMM is esti-
mated in order to compute a set of representatives, e.g. visual or, here, acoustic
words. These represent the global distribution of the samples. For the encod-
ing, each feature is assigned to the visual/acoustic words based on the GMM
posteriors. Then, the differences of the local distribution with respect the global
distribution of the acoustic words are encoded the mean and covariance devia-
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tion vectors of the feature vector and the visual/acoustic word. While this allows
to append continuous coordinates and yields a very detailed encoding compared
to a hard or soft quantization, it also requires enough samples in order to ro-
bustly estimate the local distributions. Given the low number of frames in a time
window this is hardly possible in acoustic classification and event detection.

In [8] quantized x, y coordinates that roughly encode the position of a feature
within an image are appended. This approach preserves a tiling structure similar
to the pyramid scheme and does not estimate the local feature distributions. The
augmentation of the features with quantized coordinates causes the clustering
step in the Bag-of-Feature computation to form different codebooks for different
regions of an image or a time window. It could be shown that these adaptive
codebooks cover the information contained in each tile better than a global
codebook and allow for reducing the dimensionality of the representation.

In this paper it will be shown that the detection and classification of acoustic
events based on Bag-of-Super-Features representations of acoustic words can be
improved by augmenting the features with a temporal component. The evalua-
tion will show that a tiling with adaptive codebooks as proposed in [8] outper-
forms plain Bag-of-Features methods as well as pyramid schemes in recognition
rates while at the same time having a lower dimensionality. Furthermore, the
evaluation will show the influence of parameters such as window length and code-
book size on the Bag-of-Super-Features approach and finally a comparison with
recent methods will show that the proposed approach achieves state-of-the-art
results.

2 Method

For the acoustic event detection and classification, a single microphone or beam-
formed signal is processed in short time windows of w seconds. An overview of
the processing method is shown in Fig. 2. For a given window i, a set of fea-
ture vectors Yi = (y1 . . .yK) is calculated for all K frames in this window. All
features in this set are augmented with additional temporal information with
respect to the window. These features are then softly quantized by a GMM that
has been trained in a supervised manner so that a Bag-of-Features representation
is computed. Finally, a multinomial maximum likelihood classifier is applied.

2.1 Features

For sound and especially speech processing, the mel frequency cepstral coeffi-
cients (MFCCs) are one of the most widely used features. The input signal is
filtered by a triangular mel frequency filter bank. In the computational model-
ing of the human hearing process [25], ERB-spaced gammatone filterbanks are
used. From that the gammatone frequency cepstral coefficients (GFCCs) were

A video of the proposed method applied in our lab can be found at:
https://vimeo.com/134489154
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Fig. 1. Overview of the method: Given a window containing an acoustic signal, MFCCs,
GFCCs and a loudness feature are computed. The resulting feature vector is augmented
by a quantized time coordinate with respect to the window. A GMM is applied for
clustering the features of each class in order to learn a supervised codebook. Finally,
all features are quantized and the resulting histogram is classified by a multinomial
maximum likelihood classifier.

derived [19]. The filterbank of the MFCCs is replaced by linear phase gamma-
tone filters. The basic feature vector is comprised of regular MFCCs, GFCCs
and the perceptual loudness derived from the A-weighted magnitude spectrum.
A basic whitening step is performed by subtracting the mean and dividing by
the standard deviation of the traning data.

2.2 Feature Augmentation

It has been shown that adding time information is able to improve the recognition
rates of acoustic event detection and classification [16]. This idea is highly related
to the encoding of spatial information in the vision domain [11]. In contrast to
the popular pyramid approach, in the following, the time information is directly
encoded at feature level [8].

Therefore, quantized time coordinates t are appended to the feature vector.
Given a fixed window of w seconds in length, it is subdivided into N tiles of equal
size so that the time is quantized into a value of [1, .., N ]. Thus the augmented
feature vector consists of 13 MFCCs m, 13 GFCCs g, loudness l and a temporal
index t:

yk = (m1, . . . ,m13, g1, . . . , g13, l, t)
T

(1)

Note that when quantizing these features by a vector quantizer or a GMM
in order to compute a Bag-of-Features representation this generates adaptive
codebooks for each tile. This is a major difference to the spatial pyramid ap-
proach where the same codebook is used for each tile. Furthermore, the size of
the codebook V determines the size of the overall feature representation whereas
the size of the feature representation grows with each tile in the pyramid scheme
[8, 11]. In this approach only tiling is used and the upper levels of the pyramid
are discarded as they usually do not carry much information (cf. [8]).
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2.3 Bag-of-Super-Features

After augmenting the feature vectors with temporal information, a Bag-of-
Features approach is applied. Hence, a codebook of acoustic words is estimated
from the training set. Most Bag-of-Features approaches use clustering algo-
rithms, e.g. k-means, on the complete training set to derive a codebook and
later assign each feature to a centroid by hard quantization.

However, disregarding the labels in the clustering step can lead to mitigation
of significant differences. A remedy for this effect is to build codebooks of size
Z for all C classes Ωc separately and then to concatenate them into a large
super-codebook. This method is referred to as a Bag-of-Super-Features (cf. [16])
in analogy to the super-vector construct used in speaker identification [22].

Here, the expectation-maximization (EM) algorithm is applied to all fea-
ture vectors yk for each class Ωc in order to estimate Z means and deviations
µz,c, σz,c for all C classes. All means and deviations are concatenated into a
super-codebook v with V = Z · C elements

vj=(c·Z+z) = (µz,c, σz,c) (2)

where the index j is computed from the class index c and the Gaussian index
z as j = c · Z + z. Using this super-codebook, a soft quantization of a feature
vector yk can be computed as

qk,j(yk, vj) = N (yk|vj) /
∑
j′

N (yk|vj′) . (3)

Then, a histogram b can be computed over all K frames of an input window Yi,
where the occurrences of an acoustic word vj in the window Yi are estimated by

bi(Yi, vj) =
1

K

∑
k

qk,j(yk, vj) . (4)

These histograms can then be used as a feature representation of the window Yi
and as an input for a classifier.

2.4 Classification

The probability of an acoustic word vj to occur in a given class Ωc is estimated
using a set of training windows Yi ∈ Ωc for each class c by Laplacian smoothing:

P (vj |Ωc) =
α+

∑
Yi∈Ωc

bi(Yi, vj)

αV +
∑V
u=1

∑
Ym∈Ωc

bm(Ym, vu)
, (5)

where α is weighting factor for the smoothing (in practice α = 0.5 showed good
results). Hence, the probability is estimated by the fraction of the acoustic word
vj to occur in any window of class c with respect to all acoustic words occurring
in any window class c. Rather than using a prior classification step to eliminate
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silence and background noise, as done in several systems (cf. [23]), the rejection
class Ω0 is trained with recordings where no event occurred.

Since all classes are assumed to be equally likely and have the same prior,
maximum likelihood classification is used. The posterior is estimated using the
relative frequency of all acoustic words

P (Yi|Ωc) =
∏
vj∈v

P (vj |Ωc)bi(Yi,vj) . (6)

For the classification of a single window Yi the maximum probability is chosen
for deriving a label that is assigned to this window.

2.5 Detection

Due to the simplicity and rapid computation of this approach it can easily be
adapted to event detection. Here, a sequence of acoustic events is given.

The classification window is applied as a sliding window that is moved for-
ward for one frame k at a time. The recognition result is used for the frame that
is centered in the window so that context information is available for a short
time before and after the frame. As the window has a length of w seconds, there
is a processing delay of w/2 seconds. As the implementation is running in real
time, this delay is of high interest. In the experiments it will be shown that a
delay of 300 ms is sufficient for practical purposes.

3 Evaluation

The proposed method has been evaluated on the very challenging office live
task of the DCase (Detection and Classification of Acoustic Scenes and Events)
challenge [6]. The temporal feature augmentation is compared with a Bag-of-
Super-Features approach without feature augmentation and the pyramid scheme.
Parameters with respect to temporal processing, like the windows size and tilings,
as well as the influence of the codebook size are evaluated. The approach is
then compared to the state of the art methods. In order to test for significant
differences between classifiers and parameter configurations, a randomization
test (N = 1e5) has been performed [7]. This method was chosen since it does
avoid any distribution assumption.

3.1 D-Case office live dataset

The dataset of this task is comprised of a variety of indoor sounds that could
occur in an office or comparably a meeting room scenario. There are 16 sound
classes alert, clearthroat, cough, doorslam, drawer, keyboard, knock, laughter,
mouse, pageturn, pendrop, phone, printer, speech, switch, keys and additionally
silence that have to be detected. The dataset provides a training set of segmented
sequences for each of the 16 classes with a total length of 18 minutes and 49
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tilings
w 2 4 6 8 10 12

te
m

p
o
ra

l 0.3 50.6±3.9 50.8±3.5 50.8±3.4 50.6±3.3 50.7±3.4 50.6±3.4
0.6 53.8±3.0 55.3±2.6 55.7±3.1 55.7±3.0 55.4±2.8 55.5±2.7
0.9 51.7±5.9 53.5±4.2 55.2±4.5 55.3±4.6 55.1±3.9 55.2±4.2
1.2 50.0±5.3 52.0±3.7 53.1±4.6 54.2±4.4 54.1±3.9 54.1±3.6
1.5 43.1±9.1 48.3±6.3 49.9±6.4 51.1±6.2 51.8±5.8 52.0±5.1

p
y
ra

m
id

0.3 50.3±3.6 50.1±3.5 50.0±3.5 49.7±3.5 49.5±3.4 49.6±3.4
0.6 54.9±3.1 54.7±2.8 54.6±2.8 54.4±2.7 54.4±2.8 53.9±2.9
0.9 54.6±3.9 54.2±3.8 54.0±3.9 53.8±4.0 53.6±4.1 53.5±4.2
1.2 54.3±3.6 54.3±3.5 53.9±3.4 53.9±3.3 53.6±3.3 53.4±3.3
1.5 50.7±5.4 50.6±5.1 50.2±5.0 50.1±5.0 49.7±5.0 49.4±5.0

Table 1. F-scores [%] and standard deviation for pyramids and temporal feature aug-
mentation for different window lengths and tilings. The results are averaged over all
three scripts, both annotations and 50 codebook generations using Z = 30.

seconds. Furthermore, there are three scripted test sequences which are publicly
available with a total length of 5 minutes and 21 seconds. For each of these
sequences two annotations are available. Since there is no training data for the
silence/background class, the silence portions from the other two scripts were
used to train the classifier for each script. The task is to detect the acoustic events
in these sequences and classify them correctly. Hence, for different methods the
precision and recall with respect to the number of frames that are correctly
recognized are computed and the F-score is evaluated. All experiments were
repeated 50 times using different codebooks each time over all sequences and
annotations, yielding a total of 300 runs. Note that the differences in the scripts
lead to a larger variance as the results for each script differ by about 3%.

3.2 Temporal processing

For the detection of acoustic events, two parameters are of interest with respect
to the temporal processing. The first one is the length of the window w in
seconds, the second one is the spatial setup within this window, i.e. the number
of tiles. The F-scores of different window lengths and tilings for the temporal
feature augmentation and the temporal pyramid scheme, as proposed in [16],
are shown in Tab. 1. For the pyramids an additional max pooling step has been
computed on top of the tilings. All parameter combinations have been evaluated
using Z = 30, i.e. a super-codebook size of V = 30 · 17.

It can be seen that for both methods, the best results are achieved by using
a window length of 0.6 s. Furthermore, a baseline method with no spatial infor-
mation has been evaluated with different window lengths as well. Again the best
classification performance of 55.0±3.1% has been achieved with a window length
of 0.6 s. The results also show that the adaptive codebooks that are computed
for each tile by the feature augmentation approach allow for a more fine grained
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Classifier \ Z 20 30 40 60 90 120

feature augmentation 54.3±2.8 55.7±3.1 55.9±3.5 54.8±4.4 51.5±4.9 48.0±4.8
pyramid 54.3±3.2 54.9±3.1 55.1±3.2 54.5±4.0 52.2±4.6 48.9±4.7
w/o temp processing 54.4±2.7 55.0±3.1 54.8±3.3 54.1±4.1 51.6±5.0 48.0±4.9

Table 2. F-scores [%] and standard deviation for pyramids and temporal feature aug-
mentation for different codebook sizes. Best performing temporal configurations are
used. Results are averaged over all three scripts, both annotations and 50 codebooks.

analysis. The best results are achieved by using 6 or 8 tiles, while the pyramid
scheme shows the best result with only two tiles.

Using the best configuration for each augmentation scheme, the permutation
test has been performed. This revealed that the temporal augmentation signifi-
cantly (p < 0.01) outperformed the pyramid and the unaugmented classification.
It also showed that the pyramid did not outperform the unaugmented version.

3.3 Codebook size

Different codebook sizes of Z = 20, 30, 40, 60, 90, 120 were evaluated for
the pyramid approach, the temporal feature augmentation and a Bag-of-Super-
Features approach without temporal information. For all methods the best per-
forming temporal processing configurations are used. Hence, a window size of
0.6 s is used for all three approaches. For the pyramid two tiles and for the
acoustic words with temporal feature augmentation six tiles are computed.

While for the augmented features the size of the overall feature representa-
tion is equal to the super-codebook size V = C · Z, the concatenation in the
pyramid scheme further increases the size of the final representation. Hence, a
temporal pyramid with N tiles at the bottom and one top layer has a final
feature representation of the size (N + 1) · V .

In Tab. 2 the results are shown. It can be observed that small codebooks of
30 or 40 acoustic words per class yields good results and that the performance
deteriorates with an increasing codebook size. The best performance is achieved
using temporal feature augmentation and a codebook size that uses 40 centroids
per class (i.e. a super-codebook size of V = 680).

3.4 Comparison with state-of-the-art

For comparison, some state-of-the-art methods were re-implemented and used in
combination with the MFCC-GFCC features. Additionally, published results for
the D-Case office live development set were used for comparing the performance.

Re-implemented methods The Bag-of-Frames method [1], the Bag-of-Audio
words method [13] and a Bag-of-Features approach using Fisher encoding and
a linear SVM (cf. [3]) were evaluated. The Bag-of-Frames estimates one GMM
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NMF baseline [6]
Fisher LinSVM [3]

SVM MFCC [12]
BAW [13]
GMM [1]

BoSF [16]
BoSF Pyramid [16]

BoSF Temporal *
BG-FG GMM [24]

F [%]

literature figures

re-implemented

proposed

Fig. 2. Comparison of different classifiers and literature values on the D-Case office live
development set with the proposed approach * as F-scores [%]. The re-implemented re-
sults are averaged over all three scripts, both annotations and 50 codebook generations.
The best parameter configuration for each classifier was chosen.

per class. It achieves the best performance with a codebook size of Z = 30 per
GMM. The Bag-of-Audio words uses hard vector quantization with V = 1000 as
originally proposed and an SVM with a histogram intersection kernel. As Fisher
encoding usually uses smaller codebooks, the best performance was achieved
with a codebook size of Z = 5 and encoding the mean and covariance deviation
vectors. Detailed results are shown in Fig. 2 in blue. The Bag-of-Audio words
achieved an F-score of only 47% , which is most likely due to the unsupervised
codebook learning. Also the Fisher approach yields an F-score of only 26%.
This clearly demonstrates that short time windows do not cover enough frames
in order to robustly estimate the local distributions around each centroid of the
codebook. With an F-Score of 56% the temporal augmentation outperformed the
well known Bag-of-Audio-Words method. The difference was proven significant
(p < 0.01) by the permutation test.

Results from the literature When comparing these results with the ones published
for the D-Case office live development set, shown in Fig. 2 in gray, it can be seen
that the temporal augmentation outperforms most live detection methods. Note
however, that it is difficult to accurately compare to these results as the protocol
might deviate with respect to the number of runs or even more importantly
scripts or annotations used in the evaluation. The offline HMM based results are
not shown since the task of online detection is investigated. Typically, the best
performing offline HMM approaches achieve a 20% higher F-score (cf. [18]). The
best performing online method is the GMM based approach using a separate
background model [24]. With an F-score of 56.3% it is well in the range of our
proposed method. However, the authors state that it is not robust to noise.

3.5 Result discussion

Figure 3 shows the class-wise F-Score over all sequences. The most difficult
categories include switch and mouse, which usually last only a few ms and are
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Fig. 3. Classwise F-Score on D-Case Develpment set sequences using the proposed
method.

therefore very difficult to detect in an online detection approach that relies on
some context. In most cases those are mistaken for silence. Longer lasting (e.g.
printing) or very distinctive acoustic events (e.g. knocks or coughs) are more
easily recognized. An exemplary result on the first 60 s of a sequence is shown
in Fig. 4.

4 Conclusion

In this paper a novel method for online acoustic event detection has been pro-
posed. It builds on the Bag-of-Features principle and integrates feature augmen-
tation with a temporal component and a supervised codebook learning step.

The experiments on a challenging indoor dataset of acoustic events show
that the proposed method yields state-of-the-art results compared to other on-
line event detection methods. Furthermore, it could be shown that the feature
augmentation yields significant improvements over a basic Bag-of-Features ap-
proach and the well known pyramid scheme, while at the same time reducing
the dimensionality of the representation. The results show that for practical
purposes a processing delay of only 300 ms allows for the integration of enough
context to robustly recognize acoustic events.

ground truth

0 5 10 15 20 25 30 35 40 45 50 55
time in s

detection result

� alert � clearthroat � cough � doorslam � drawer � keyboard � knock
� laughter � mouse � pageturn � pendrop � phone � printer � speech � switch
� keys � silence

Fig. 4. Example detection results for the first 60 s of sequence 01 of the D-Case office
live development set using the proposed method with temporal feature augmentation
using six tiles over a window size of 0.6 s and a codebook size of Z = 40.
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