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Labeling images is tedious and costly work that is required for many applications, for example, tag-
ging, grouping and exploring of image collections. It is also necessary for training visual classifiers
that recognize scenes or objects. It is therefore desirable to either reduce the human effort or infer
additional knowledge by addressing this task with algorithms that allow for learning image annota-
tions in a semi-supervised manner. In this paper, a semi-supervised annotation learning algorithm is
introduced that is based on partitioning the data in a multi-view approach. The method is applied to
large, diverse image collections of natural scene images. Experiments are performed on the 15 Scenes
and SUN databases. It is shown that for sparsely labeled datasets the proposed annotation learning
algorithm is able to infer additional knowledge from the unlabeled samples and therefore improve
the performance of visual classifiers in comparison to supervised learning. Furthermore, the proposed
algorithm outperforms other related semi-supervised learning approaches.
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1. Introduction

Labeling images is very time consuming manual work. It allows for grouping or tagging
images in private, web or stock photo collections, but is also a requirement for organizing
large scale image archives which can, for example, be found in many museums and li-
braries. Furthermore, labeling is an important prerequisite for visual recognition tasks. The
recognition of visual scenes or objects relies on large sets of training images that describe
the respective problem domain.

In the past, researchers have pointed out that the availability of data is a crucial issue in
computer vision21. Since then the availability of image databases has improved and large
scale image sets, like PASCAL VOC, SUN or ImageNet have been created. However, a
key problem remains: despite the availability of web images and crowd sourcing projects,
the creation of these large scale datasets is still very time consuming. For example, collect-
ing and labeling the 14 million images in the ImageNet database took five years. Crowd
sourcing projects allow for distributing the labeling effort20, but for the annotator itself the
labeling process has not become more efficient. It is worth mentioning that the labeling
time is not only dependent on the level of annotation (e.g. outlines, bounding boxes or
presence/absence labels) but often also on the number of different categories. For example,
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labeling the presence or absence of an object takes about 1 second per object(cf. 24). For
ambiguous multi-class issues the decision making process will obviously take longer than
for easy ones. Besides the tremendous amount of work and the costs associated with it
there are two more problems. First, in the work of Torralba and Efros it could be shown
that image databases are highly biased27. The training of a visual classifier will therefore
require the creation of a task specific training set. Here, typical details can be the categories
to be classified, the viewpoint, the image type or its resolution. Second, in non-academic
settings, companies are often required to possess the data and therefore create newly anno-
tated datasets for specific tasks.

Therefore, it is a huge benefit if the problem of labeling can be tackled by algorithms
that allow for learning annotations. Such algorithms would either allow to minimize the
amount of manual work or to infer more knowledge using additional information from
unlabeled samples with the same amount of labeling operations.

In order to efficiently learn annotations, semi-supervised learning algorithms can be
used. Common approaches propagate annotations from a few labeled samples to a large
set of unlabeled samples. There is a wide variety of algorithms including, for example,
mixture models, transductive SVMs and graph-based methods(cf. 33,34). A major problem
of semi-supervised learning is that incorrect matching during the learning phase can lead to
degradation in classifier performance. If the model assumptions do not match the problem
domain or the initially labeled samples do not describe the problem domain accurately,
these algorithms do not work well.

The unlabeled samples that are required to efficiently apply semi-supervised algorithms
can be collected as additional samples, e.g. from web sources(cf. 13,25). Moreover, the
noisy labels that are often associated with images from the web can be leveraged for learn-
ing annotations in a different dataset or re-ranking those noisy labels9. A typical example
of a collection of web images with noisy labels is the 80 million tiny image database26.

In other scenarios all data is collected beforehand, but without any labels. For example,
object, person or face recognition often requires tremendous amounts of training data and
it is easy to collect this data, but mostly without any labels. In this paper a scenario, where
the data is collected beforehand but without any labels is considered. The goal is to not
only learn annotations but to train a visual classifier based on the learned annotations.

2. Related Work

Intuitively, semi-supervised learning strategies such as graph-based label propagation in-
troduced by Zhou et al.30 can be used for labeling a dataset in a semi-supervised manner.
The initially labeled dataset that is required for label propagation can be created by ran-
dom selection or a steered sample selection strategy. Usually, these semi-supervised meth-
ods aim toward labeling the complete dataset and do not consider the goal of training a
classifier afterwards.

In the work of Ebert et al.7 it could be shown that active learning is able to improve
the quality of semi-supervised learning algorithms on datasets that are collected before-
hand. The learning strategies extend the graph-based label propagation30 and are used
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for learning annotations in image collections for visual object recognition. However, the
improvements from adding samples by active learning imply that several labels are incor-
rectly inferred by the label propagation and that either a single feature representation is not
necessarily descriptive enough to guarantee a correct propagation or, if possible, a feature
selection strategy should be employed for creating the initial labeled dataset that is used
for the graph-based label propagation.

A similar problem has been addressed by Richarz et al.22 in the field of handwritten
character recognition. Character images pose a perfect task for semi-supervised annotation
learning, since there is a large amount of samples which are very similar if they are from
the same writer. In contrast to classical semi-supervised learning scenarios there is neither
an initially labeled set, nor a stream from which the data is collected in a fixed order.
Instead the samples that need to be labeled are selected from the unlabeled dataset and
presented to an annotator, which is similar to the active learning concept presented by
Ebert et al.7 but neither initial labels that can be propagated nor any knowledge about the
problem domain are considered. For each handwritten character image different feature
representations are computed and an ensemble decision is used for propagating the labels
in order to be robust against incorrect matches. The advantage of using different feature
representations in ensembles has already been shown by Zhou31.

Two methods for learning annotations are presented by Richarz et al.22: in the first ap-
proach, the feature representations are clustered so that one label has to be requested for
each cluster in a given representation by judging all samples. In the second approach, ran-
domly drawn samples are labeled and used as query samples for a retrieval task. Samples
that receive the same annotation in different feature representations are assigned a label.
It could be shown that the manual labeling effort for characters written by a single per-
son can be reduced to less than 1%. The advantage of the clustering based method is that it
forms comparably large partitions of the data and is therefore especially suitable to identify
groups of samples that can easily be associated with one class. However, samples that are
more difficult to assign to one specific class, e.g. those on class borders, will not be labeled
by this approach although they carry information that might be crucial for recognition tasks
with a high intra class variability. The main advantage of the retrieval based approach is
that only one label needs to be requested for a sample in all feature representations. The
retrieval lists that are used for propagating the labels allow for either a very coarse or a
very fine grained analysis of the feature space. It is, however, very difficult to determine
an appropriate parameterization. Thi especially applies for feature representations that are
not necessarily normalized and a problem domain where no training data is available.

In this paper, a new iterative partitioning-based learning approach is presented that
allows to overcome the shortcomings of these approaches. It combines key-principles of
joint, active and ensemble learning: A cluster based ensemble learning approach that par-
titions the dataset is combined with a refinement step. It uses a multi-view cluster and
distance evaluation in order to select samples in regions of the feature space that are diffi-
cult to recognize within the ensemble. 1) Both clustering and refinement step are combined
in one joint learning method that iteratively refines the partitioning of the feature space. 2)
All labels are requested from a human in the loop using sample selection that is either
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Fig. 1. Overview of the iterative partitioning-based learning approach. The method is initialized by clustering the
data independently in multiple feature representations which is then refined based on a multi-view cluster scoring
and distance evaluation. Using manual labeling for a few representatives, labels for are inferred for the unlabeled
samples, resulting in a partially labeled sample set.

based on the clustering or the retrieval of difficult samples. The system becomes more in-
formed the more samples are labeled. 3) It is assumed that either the propagation of labels
will introduce some errors or that labels given by the human in the loop are not always
completely accurate. The cluster ensemble introduces multiple views on the data and al-
lows for being more robust against such errors by a voting before propagating the data to
the remaining unlabeled samples.

The method is applied to collections of natural scene images, which are much more
complex than, for example, the handwritten character images and pose a difficult task for
semi-supervised learning. An extensive evaluation is given, comparing the proposed ap-
proach to supervised learning, the annotation learning methods from by Richarz et al.22

and semi-supervised label propagation by Zhou et al.30. It will be shown that for the same
amount of labeling operations the proposed method outperforms supervised learning on
sparsely labeled datasets and also shows better performance than the other semi-supervised
learning approaches.

3. Iterative partitioning-based learning

In the following section the new iterative partitioning-based learning approach is presented.
It is illustrated in Fig. 1 and consists of three main steps:

1) The learning algorithm is initialized by computing different feature representations
and reducing their dimensionality by computing a subspace representation. These repre-
sentations are then clustered independently.

2) The cluster partitions are then refined by iteratively adding new partitions in regions
where little to no knowledge about the samples can be inferred from the clustering process.
Here, a multi-view cluster and distance evaluation is computed for finding these regions.
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3) The centroids are manually labeled and used in order to infer labels for the unlabeled
samples, resulting in a partially labeled sample set. Samples where no class can be assigned
with high certainty remain unlabeled.

The learned image annotations are then used for training a visual classifier. The main
goal of the semi-supervised learning approach is to improve the recognition rate of this
classifier so that it requires only a low number of annotated samples and performs better
than a classifier that is trained in a supervised manner.

Initialization

First, M feature representations are computed in order to implement an ensemble that of-
fers different views on the data. Typical feature representations, like Bag-of-Features, LBP
histograms or the GIST, are very high dimensional and not necessarily ideal for creating
partitions as well as for computing meaningful cluster scores(cf. 19). A lower dimensional
representation, which is non-sparse, is desirable since cluster evaluation methods basically
measure the overlap between different cluster partitions. It is also more efficient when
clustering large data collections.

There are two alternative approaches for creating a lower dimensional subspace. On the
one side transformations that compute new features by computing linear combinations of
a given feature representation and uncovering a latent structure. On the other side feature
selection methods which attempt to find the most relevant dimensions of a given feature
representation. Feature selection methods are often used in the context of subspace cluster-
ing. They assume that not all dimensions carry information that is relevant for clustering
the data and that interpretability is a crucial issue(cf. 19). However, for typical image clas-
sification representations that include a feature learning step it can be assumed that all
dimensions are relevant. For example, in Bag-of-Features representations the features are
learned from the data by clustering local feature descriptors in order to obtain a codebook
of meaningful representatives. Some of these representatives might be correlated and it is
therefore more appropriate to compute a transformation19.

Here, using a Singular Value Decomposition is proposed (also referred to as LSI3). It is
computed in each feature representation m and the dimensionality of the data is reduced:

UΣV T = svd(Xm) (1)

where Xm is approximated by X̂m by choosing the Z dimensions with the largest singular
values from Σ and x̂i,m denotes the ith feature in representation m. These subspaces are
often referred to as topic spaces in the context of Bag-of-Words representations. It has
been shown that up to a certain point topic space transformations allow for creating lower
dimensional feature representations without loosing the descriptiveness (cf. 1,3).

The partitioning of the feature spaces is then initialized by applying clustering in each
topic space independently. Note that any method that allows for partitioning the data in
an unsupervised manner is applicable, e.g. Lloyd’s14, MacQueen’s15 or spherical k-means
clustering4. It is however important that the clustering allows for determining a meaningful
centroid. In every feature representation m, K partitions Qk,m of the data are created.
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Ideally, each partition is assigned a label based on its centroid. If the centroid does not
match a sample, the sample closest to the centroid is annotated. Using these annotations a
label matrix Y is created that assumes that the labels are propagated to all samples within
the partition. Hence, the number of manual annotations is reduced to M ·K. For the ith

sample the labels assigned in the different feature representations are then represented as
C-dimensional binary vectors

[Yi,m,1, . . . , Yi,m,C ]
T ∈ {0, 1}, m = 1, . . . ,M (2)

where C is the number of classes. An entry of the vector is 1 if the label of the sample’s
partition equals c and 0 otherwise. Note that for an unknown number of classes the size
of the vector can be iteratively increased. The initial regions consist mostly of samples
that are easy to distinguish based on the feature representations. However, for very diverse
classification problems such as natural scene recognition the majority of samples are rather
difficult to assign to a class, because of the high intra class variability and ambiguities.
Therefore, it is interesting to further explore the feature space by iteratively refining the
partitioning.

Refinement

In order to find regions where it is useful to refine the partitioning two basic assumptions
are made. First, partitions that are not well separated from other partitions are not mean-
ingful. Second, the uncertainty is higher if a sample is far away from its centroid since the
labeling is based on the partitions’ centroid.

The first condition can be evaluated by measures such as the Dunn Index6, the Silhou-
ette Score23 or the Davies Bouldin measure2. Here, a modified version of the Dunn Index
that uses the preliminary label information for evaluating the partitions is proposed:

dunn(k,m) =
dinter(Qk,m,m)

dintra(Qk,m)
(3)

where dintra represents the intra partition distance and dinter represents the distance be-
tween two partitions that have different labels:

dintra(Q) =
1

|Q|
∑
a∈Q

max
b∈Q

d(a, b) (4)

dinter(Q,m) =
1

|Q|
∑
a∈Q

min
b/∈Q; Ya,m,: 6=Yb,m,:

d(a, b) (5)

Hence, partitions that are very close and assigned the same label do not influence the Dunn
Index negatively. For example, the samples of one class might be represented by a few
partitions. If these partitions are close together they are ignored with respect to the distance
dinter. In order to combine the knowledge from the different feature representations, the
label vector for a sample is multiplied with the respective Dunn scores
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λdunn(i) = max
c

1

M

∑
m

dunn(q(x̂i,m),m) · Yi,m,: (6)

where q(·) assigns a sample to its partition Qk,m. By computing the maximum of the
vector sum, samples that belong to partitions with high Dunn scores and where the different
feature representations agree on a label will be assigned a high combined score. Samples
that belong to partitions with low Dunn scores that do not agree on a label will be assigned
a low combined score. This combination can be seen as an active learning process that
incorporates context information by taking into account the neighborhood of a sample in
form of its respective partition and reliable knowledge from the already labeled samples in
the different feature representations.

The second assumption is evaluated by a distance function that is computed in all rep-
resentations:

λdist(i) =
1

M

∑
m

1

1 + d(x̂i,m, q(x̂i,m))
(7)

Here, d can be any kind of distance function, e.g. the Euclidean or the cosine distance.
Both terms are then combined in a target function that is evaluated for all samples:

i∗ = argmin
i

λdunn(i) + λdist(i) (8)

The sample with the minimum rating is chosen to be labeled by an annotator and added
as an additional centroid. The Dunn term causes the minimization to focus on regions
where the ensemble does not agree and the partitions are not well separated. The distance
term focuses on samples that are farther away from their respective centroids. As a result
the samples computed by this refinement strategy will focus on either outliers in regions
where no knowledge can be inferred or on class borders where the ensemble disagrees. The
idea of the selection is very similar to the informativeness in SVM based semi-supervised
learning approaches(cf. 32).

The partitions are then updated by re-assigning all samples to the centroids including
the one added by minimizing eq. 8. The update can be computed by the same update
rule as used in the clustering process, i.e. for k-means problems each sample is assigned
to the closest centroid yielding a new Voronoi tesselation. Changing the partitioning also
includes an update of the label matrix Y . Finally, new Dunn scores are computed using
the assignment of the samples to the respective centroids. This can efficiently be solved by
updating only those scores that are influenced by the re-partitioning: the distance dintra can
only change for those partitions that formerly contained samples that are assigned to the
newly added partition. The distance between the partitions is more difficult, as it contains
the constraint that for all samples a of a partition Q the nearest sample b needs to have
a different label. Given that only partitions with labels of a set of classes C have changed
by the re-partitioning, including the newly assigned label, it is possible to constrain the
computation. If a partition has not been changed by the refinement, then its distance dinter
cannot change if its label c /∈ C. The nearest sample b with a different label would be
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the same, no matter what the actual label of b is. In the evaluations these constraints were
able to improve the computation time of the Dunn scores by 50% − 80%, depending on
the number of partitions and the number of classes in the dataset. For a large number
of partitions the re-computation of the distances between the partitions could be further
constrained by applying the triangle inequality8 on the centroids. Otherwise the process
can also be speed-up by computing approximate Nearest Neighbors16.

Typically, the partitions that are computed by adding new centroids in the refinement
steps are rather small. It will, however, be shown that they contain valuable information for
training a visual recognizer.

The process is iterated until either all scores are sufficiently high or a fixed number
of labeling operations have been performed. This allows to reduce the number of further
manual annotations to K ′ as the labels for the additional centroids in the partitioning step
can be propagated through all feature representations.

Final label propagation

In a final voting step the previously computed label matrix Y that has been updated during
the refinement of the partitions is used to assign labels to the so far unlabeled samples of a
dataset. Applying majority voting for the ith sample results in an ensemble decision for a
specific class label

ymax
i =

argmax
c

∑M
m=1 Yi,m,c if max

c
Yi,m,c >

M
2

−1 otherwise ,
(9)

where −1 is a rejection class. Annotations are learned only for samples where the class
membership is determined with a majority agreement. If the goal is a very precise labeling
(e.g. tagging images) other voting schemes, like unanimity voting, might be considered.
Here, the samples that were assigned a label by the semi-supervised learning algorithm
will later on be used for training a visual classifier and it is beneficial to label more images
although a few errors might be introduced by the majority voting. Samples where no ma-
jority was observed among the different setups are rejected by the learning process. This
is an important difference to several semi-supervised learning algorithms that aim toward
labeling all samples and therefore tend to make mistakes in regions of the dataset where
not enough knowledge can be inferred from the manually labeled samples.

4. Evaluation

The evaluation of the method was performed on two different datasets. First, suitable fea-
tures and parameters were determined on the 15 Scenes database12. Using the model as-
sumptions that were derived from these experiments, the method was applied to the SUN
scene recognition database29. To the best of our knowledge our approach and the works
from Ebert et al.7 and Fergus et al.9 are the only efforts applying semi-supervised learning
methods to train a visual classifier on such large scale image collections.
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Implementation details

In the following Lloyd’s k-Means algorithm14 is used for the clustering as it is widely rec-
ognized as a standard technique. As a result, the distance evaluation that is used for both
conditions of the refinement step is based on the Euclidean distance measure. Accordingly,
The re-partitioning is based on the Euclidean distance as well so that a new Voronoi Tes-
selation is formed in every iteration. In the following the effect of different topic space
sizes, the improvement achieved by the refinement and varying numbers of labels in the
refinement step will be evaluated.

4.1. 15 Scenes database

The experimental setup is based on the evaluation protocol for supervised classification that
has been introduced for the SUN database29: 200 samples per class (= 3,000 in total) were
randomly chosen and considered unlabeled for evaluating the semi-supervised approaches.
The remaining 1, 485 samples were used for testing the classifier. In all experiments the
number of manual labeling operations is used as a free parameter. The unlabeled samples
are then labeled by either manually labeling a fixed number of samples (supervised learn-
ing) or a semi-supervised learning approach. The labeling is simulated, assuming a perfect
annotation for each sample (i.e. the partition centroids). For the supervised learning the
samples are randomly drawn from the training set. Finally an SVM is trained based on the
samples that were labeled in a semi-supervised manner. A five-fold crossvalidation was
performed for all experiments.

4.1.1. Feature selection

Most importantly, for the semi-supervised approaches the features must represent the dif-
ferent categories well, which can be evaluated by a supervised classification experiment.
In addition, it is desirable for the multi-view approach to have diverse representations of
the data. Hence, common local and global image descriptors are considered. In this work
features derived from Deep Neural Networks(cf. 11) are not considered. Although they
achieve state-of-the-art results, training or just adapting them to a given task is typically
done in a supervised manner and therefore requires tremendous amounts of data which is
counteracting the proposed approach.

A description of the feature types and the results of a supervised experiment using 200
labeled samples per class is shown in Table 1. The classification is performed using an
SVM. These results can also be seen as an upper bound for the results that are achievable
in any semi-supervised setting. For the local image descriptors SIFT shows the best results.
Spatial Visual Vocabularies are computed from the local SIFT descriptors. They are then
aggregated in a Bag-of-Features representation10. With respect to the performance there is
only a slight difference between the xy- and the radial-tiling, as well, as the very similar
SIFT and HOG features. For the global descriptors the GIST descriptor yields the best
results and even outperforms the LBP histograms on this task. An exhaustive evaluation of
feature combinations has been performed, yielding that a combination of the two different



published in: International Journal of Pattern Recognition and Artificial Intelligence

10 Rene Grzeszick, Gernot A. Fink

Name Description Recognition
rate

SIFT (xy tiling) SIFT descriptors extracted on a dense grid with
step size of 5px and bin sizes of 4, 6, 8, 10px.
The descriptors are quantized into a codebook
of 1, 000 Spatial Visual Words10 that introduce
a 2 × 2 xy tiling (comparable to a pyramid12,
but with adaptive codebooks for each tile). This
Bag-of-Features histogram is then represented by
square rooted frequencies28.

82.1± 1.1%

SIFT (radial tiling) The same descriptors and representation as above,
but radial-tiling with two circles.

82.6± 0.7%

HOG (xy tiling) A histogram of Oriented Gradient descriptors ex-
tracted on a 5px grid with 3 × 3 regions of 8px
size and 12 different orientations. The HOG fea-
tures are also represented in a Bag-of-Features
histogram with 2 × 2 xy tiling as has been done
for the SIFT features.

80.4± 1.3%

LBP Histograms A histogram of rotation invariant Local Binary
Patterns17. At each pixel 12 comparison points are
chosen on a circle with a radius of one. A pyramid
scheme is built that computes an LBP histogram
for 3 × 3 tiles and a histogram of the complete
image is derived using max pooling.

68.8± 1.1%

SURF (xy tiling) SURF descriptors extracted on a grid with step
size of 5px. The SURF features are also repre-
sented in a Bag-of-Features histogram 2 × 2 xy
tiling as has been done for the SIFT features.

68.0± 0.7%

GIST Spatial Envelope representation5,18. The descrip-
tor is computed using three channels (RGB), three
scales and 12, 12 & 4 orientations.

72.0± 1.0%

Color/Intensities RGB/gray scale intensities represented by mean,
std. dev. and a color histogram with 16 bins per
channel.

25.7± 1.4%

Tiny Img Images scaled down to 32× 32 pixels26. 18.4± 3.2%

Table 1. Description and recognition rates (with std. dev.) of different feature representations (top: local, bottom:
global) that are evaluated in an supervised experiment on the 15 Scenes dataset. For each class 200 labeled
samples are used for training. Hence, 3,000 samples in total. Note that this experiment can also be seen as an
upper baseline for the recognition rate of the given feature representation.
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Scenes dataset: (Top) SIFTxy (Bottom) SIFTrad.

Bag-of-Feature representations using SIFT features, as well as the GIST feature performs
best. Hence, for the further experiments this setup is considered. At most three different
feature representations have been chosen, as the number of labels in the initial clustering
step increases with the number representations. Furthermore, at some point multiple feature
representations either introduce redundancies or, if the feature representations are not very
descriptive, noise is introduced. Note that a representation for the proposed method could
also consist of a combination of different feature types, for example, by simple feature
stacking.

4.1.2. Topic space

The size of the topic space is estimated by evaluating the sparsity of the dataset. Figure 2
shows that for a vocabulary size of 1,000 Visual Words as few as 70 dimensions are non-
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Fig. 3. Recognition rates of an SVM that is trained on samples that are labeled in a semi-supervised manner by
the proposed iterative partition-based method on the 15 Scenes database. (Left) Different sizes for the topic space
that is computed by LSI are compared. (Right) The topic space is compared to running the method without the
dimensionality reduction by LSI.
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Fig. 4. Recognition rates of an SVM that is trained on samples that are labeled in a semi-supervised manner by
the proposed iterative partition-based method on the 15 Scenes database. (Left) Initializations using 75% and
90% of the labeling operations for 50 topics computed by LSI. (Right) Initializations using 75% and 90% of the
labeling operations for 25 topics computed by LSI.

zero. Taking also possible correlations into account, setups with 25, 50, 75 and 100 topics
are evaluated. Assuming that the clustering partitions the feature space in a meaningful
manner, 10% of the labeling operations are used for refining the partitions. The number
of labeling operations that are used for the refinement are further investigated in the next
section. Fig. 3 shows that the the best results can be achieved with a low number of top-
ics. Furthermore, it is shown that in comparison to an approach without using topics the
recognition rate can be improved. However, as the number of labels increases, the feature
space becomes well explored forming a set of smaller partitions. Hence, the advantage
of the compactness of the feature space decreases with an increasing number of labeling
operations.

4.1.3. Initialization

The number of labeling operations that need to be assigned to the iterative refinement are
further investigated by evaluating the two best performing topic space sizes. In both cases
10% and 25% of labeling operations are used for the refinement. The results are shown in
Fig. 4. It can be seen that a certain amount of labeling operations is required in the initial
clustering in order for the method to be successful. Both configurations perform better
when using 10% of all labeling operations in the refinement. Furthermore, the comparison
to a pure cluster based method (CBL)22 in the next section will show the necessity of
refining the partitions. In the further experiments the size of the topic space is set to 50 and
10% of the labeling operations are used for refining the partitions.

4.1.4. Method comparison

In order to evaluate the performance of the iterative partitioning-based learning approach
(PBL) it is compared to supervised classifier training and three semi-supervised ap-
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Fig. 5. Recognition rates of an SVM that is trained on samples that are labeled in a semi-supervised manner on
the 15 Scenes database. (Top) Comparison with cluster and retrieval based labeling and semi-supervised label
propagation with local and global consistency. (Bottom) Comparison with supervised classifier training.

proaches: the cluster and retrieval based labeling algorithms (CBL & RBL)22 and graph
based semi-supervised label propagation with local and global consistency (LGC)30. For
the supervised classifier training a given number of samples is randomly chosen and la-
beled. For LGC these samples are used for initialization. Note that for all approaches there
are the same training and test sets and no further unlabeled samples. This is a difference
to other semi-supervised setups (e.g. the work of Ebert et al.7) where the semi-supervised
approaches use an additional pool of unlabeled data, which however introduces a bias that
favors semi-supervised approaches. In contrast our setting is more difficult since the semi-
supervised algorithms have no prior knowledge about the classes or the sample distribution,
whereas even a random drawing will roughly resemble a uniform sample distribution. In
all cases the SIFT features with 2× 2 xy tiling are used for training the final classifier.

The results are shown in Fig. 5. The proposed partition based learning approach out-
performs the other semi-supervised algorithms and performs very well when the dataset
is only sparsely annotated. Only with an increasing number of samples LGC is able to
show similar performance when the initialization works well enough to propagate labels to
all samples. In comparison with supervised classifier training there is a break-even point
from which on supervised learning is more useful than semi-supervised learning. It can
be observed at roughly 25% labeled samples within the training set. This is a good result
considering that most semi-supervised setups work with a much larger set of unlabeled
samples since it is very easy to obtain additional unlabeled samples.
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Fig. 6. Recognition rates of an SVM that is trained on samples that are labeled in a semi-supervised manner on
the 15 Scenes database. Different percentages of noise have been added by randomly swapping the correct labels.
(Left) Proposed iterative partition-based method. (Right) Semi-supervised label propagation with local and global
consistency.

4.1.5. Performance of labeling

With respect to the labeling error it can be said that both the number of learned labels as
well as the ratio of correctly labeled samples increase with the number of manual labeling
operations. For 1500 of 3000 possible labeling operations, as shown at the right-most point
of the evaluation in Fig. 5, the iterative partition-based learning approach labels 80.9±0.8%
of the samples with 88.0± 0.6% of the learned labels being correct. This also emphasizes
why multiple feature representations are necessary, as the best single view (SIFT radial)
labels only 64.5± 0.7% of the samples correctly.

4.1.6. Robustness toward labeling noise

The multi-view concept does not only allow for rejecting samples that cannot be labeled
with sufficient reliability, but also adds some robustness toward labeling noise. Figure 6
shows the recognition rate of the proposed approach compared to two evaluations where
artificial labeling noise has been introduced. Therefore, 2% and 5% of the labels have been
swapped by randomly replacing them with another label, which seems a realistic range for
the number of errors that can be made by a human annotator.

It can be seen that the results of the proposed method converge very fast toward the
recognition rates without labeling errors and that increasing the noise hardly makes any
difference. For the single view based LGC on the other hand it can be seen that increasing
the noise strongly influences the recognition rates, especially if the number of manual
labeling operations is low.

4.2. SUN database

In the following experiments the proposed method is evaluated on the SUN scene recogni-
tion database. With 397 categories and more than 100,000 images the SUN database is the
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Fig. 7. Recognition rates of an SVM on the 397 scene categories of the SUN database. The proposed approach is
compared to supervised classifier training and LGC.

largest benchmark for natural scene images. For each category 50 samples are randomly
chosen for training and the remaining ones for testing so that for every category at least
50 samples remain in the test set. Hence, the training set contains 19, 850 samples in total.
The results for a five-fold crossvalidation are shown in Fig. 7.

Note that the performance of the supervised training approach is very low for a stan-
dard classification method(cf. 29), which demonstrates that the benchmark is an extremely
challenging task. Consequently, semi-supervised learning on this dataset is extremely dif-
ficult, too. Nevertheless, the results show that semi-supervised learning is also beneficial
for challenging tasks. More sophisticated features or feature encodings would be able to
improve the recognition of supervised as well as semi-supervised learning(cf. 29).

The semi-supervised learning methods perform much better since the low number of
samples that are available when training a classifier in a supervised manner is not sufficient
to distinguish the 397 categories. Here, the iterative partitioning-based learning approach
shows good performance compared to supervised learning. Even with roughly 45% of the
training set being labeled the classifier trained on the samples that have been annotated
by the partitioning-based learning approach shows better recognition rates than the super-
vised learning. The method is also able to outperform LGC, which emphasizes that the
refinement of the partitioning in regions without thorough knowledge about the samples is
especially useful for training a classifier on samples that are learned in a semi-supervised
manner.

4.3. Discussion

While the evaluation showed that the semi-supervised approach also performs well on
challenging tasks that can hardly be solved by supervised methods, a main limitation of the
approach are the underlying feature representations. If these do not distinguish the classes
well it is impossible for any clustering method to find homogeneous clusters that contain
samples from the same class and that do not introduce errors when inferring the label from
the centroid. Better features will represent samples from the same class in compact regions
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of the feature space that are easier to identify. It will therefore be of interest to integrate
features derived from Convolutional Neural Networks so that adapting the Network to a
given task is solved jointly with the semi-supervised learning.

It should furthermore be noted is that the approach requires datasets that are completely
unlabeled and that are typically too large to be labeled completely manually. The proposed
approach is like most semi-supervised learning methods only beneficial if the dataset is
only sparsely labeled and a sufficient amount of unlabeled samples is available for learning.

Given such a dataset, the proposed approach describes a general framework that can
be combined with different feature representations that are suitable for the task at hand.
Although different representations will result in feature spaces with different attributes
these can be accounted for using an appropriate distance measure and clustering algorithm.

5. Conclusion

In this paper a novel iterative partitioning based learning approach has been introduced.
The method is initialized by clustering the data independently in multiple, dimension-
ality reduced, feature representations. The cluster partitions are then refined based on a
multi-view cluster and distance evaluation. The refinement of the feature space focuses on
regions without thorough knowledge about the samples and, therefore, allows to find sam-
ples that are particularly interesting for training a visual classifier. Using manual labeling
for a few representatives, labels are inferred for the unlabeled samples. The approach is
robust against labeling errors due to an ensemble of multiple feature representations and
context information that is included in the sample selection by taking into account the clus-
ter assignment as well as top down knowledge from previously labeled samples. Samples
for which no label can be inferred with high certainty remain unlabeled, yielding a partially
labeled sample set.

The capabilities of the method have been demonstrated in an extensive evaluation.
Suitable parameters for the method have been determined on the 15 Scenes database.
The method has then been evaluated on the SUN scene recognition database. It has been
demonstrated that the proposed approach outperforms similar semi-supervised learning al-
gorithms. Furthermore, for sparsely labeled datasets the method shows better recognition
rates than supervised classifier training. On the SUN dataset the proposed semi-supervised
method performs better than the supervised case until more than 45% of the training set
are labeled. Such scenarios are very realistic since it is easy to obtain unlabeled data for
several tasks and the method could even be combined with approaches that distribute the
labeling effort like crowd sourcing projects.
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