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ABSTRACT

This paper presents a novel method for combining local im-
age features and spatial information for object classification
tasks using the Bag-of-Features principle. The feature de-
scriptor is extended by additional spatial information. Hence,
similar feature descriptors do not only describe similar im-
age patches, but similar patches in roughly the same region.
Different spatial measures are evaluated on the Caltech101
dataset showing the improvement by incorporating spatial
information into the feature descriptor. Furthermore, the
method achieves better classification rates than the compara-
ble Spatial Pyramids with lower a dimensional representation.

Index Terms— Image classification, Bag-of-Features,
Spatial Pyramids

1. INTRODUCTION

Classifying visual objects is useful in many ways: The at-
tention of visual systems can be drawn to interesting parts of
an image, robots can learn about their environment, danger-
ous objects can be detected by surveillance systems, or infor-
mation about the environment can be provided (e.g. in aug-
mented reality applications). A major difficulty to the classifi-
cation of objects is that they vary strongly in their appearance.
There is no prior knowledge about their shape, color or very
distinctive features that can be exploited.

In the last decade Bag-of-Features representations (cf.
[1]) became very popular for image classification. Local
image features describing the visual appearance of a small
patch are extracted from a training set, clustered and quan-
tized. Hence, a fixed set of representatives, the so-called
visual words, are used for describing the features. An image
is represented by the absolute or relative frequencies of the
occuring visual words, the so-called term-vector. The pres-
ence or absence of different visual words in the term-vector
indicates different object categories.

In object classification a major shortcoming of the Bag-
of-Features representation is the lack of spatial information.
Most objects in natural scenes have a similar orientation and a
spatial structure that can be exploited, e.g. the wheels of a car

are on the ground and below the chassis. Hence, the Bag-of-
Features approach is often used in combination with Spatial
Pyramids [2, 3, 4] which re-introduce a coarse representation
of spatial information by subdividing the image and creating
a Bag-of-Features for each sub-region. A concatenation of
these term-vectors is used for describing the image. Spatial
Pyramids have successfully been applied to object classifica-
tion on various datasets like Caltech101 or VOC2007 [2, 5].
They were computed based on different local image descrip-
tors, like SIFT [6, 7] or Centrist [8] and also used for tasks like
scene categorization or object detection [8, 9]. Lately, these
representations became increasingly high dimensional, using
up to 8,000 visual words and 21 sub-regions which equals to
168,000 dimensions [5].

Such high dimensional representations are expensive in
memory and computation time, especially for large sets of
images. Manually labeled datasets like the VOC2011/2012
already contain about 30,000 images. To go even further, au-
tomatically obtained datasets can fastly grow into millions of
sample images. In [10, 11] about 80 million images were
collected and used for recognition tasks. Hence, a lower di-
mensional representation of the data is more than desirable.

We propose a method that incorporates spatial informa-
tion at feature level. The appearance features that are ex-
tracted from the image are combined with spatial features.
After clustering the spatial information is implicitly included
in the visual vocabulary. For every spatial region only those
representatives are stored that are observed in the training
data, which allows for a lower dimensional representation of
the data.

2. METHOD

The central idea of our method is to add spatial information
to the local feature descriptors before they are clustered and
quantized. We construct a new feature vector v consisting of
an appearence feature vector a and a spatial feature vector s:

v = (a0, ..., an, s0, ..., sn) (1)

After clustering the visual words do not only represent
local image descriptors that are similar in their appearance,
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but similar appearance features in roughly the same spatial
region. We refer to them as Spatial Visual Words and to the
complete set as the Spatial Visual Vocabulary.

The proposed method is illustrated in Fig. 1. From a set
of training images densly sampled SIFT features (cf. [2, 5,
12]) are extracted. Based on spatial quantization techniques,
which are described in section 2.1 and 2.2, a spatial feature
s is incoporated into the feature descriptor v. Applying the
Bag-of-Features principle, all modified descriptors are clus-
tered in order to form a Spatial Visual Vocabulary. For clus-
tering we use the generalized Lloyd algorithm (that is often
referred to as K-Means; [13]). The Spatial Visual Vocabulary
is used for quantizing the features of each training image and
describing an image by a term-vector of Spatial Visual Words.
These term-vectors are then used for training a Support Vec-
tor Machine (SVM). In the test case the appearance features
are extracted from a single image, the spatial features are ap-
pended and the descriptors are then quantized with respect
to the Spatial Visual Vocabulary from the training data. The
SVM is used for predicting a class label for the test image.

2.1. XY representation

Spatial Pyramids subdivide an image in a quadtree-like man-
ner, which implicitly uses the assumption that the visual ob-
ject is roughly centered in the image. Using the same as-
sumption, the direct translation of this approach to feature
level would be adding quantized xy-coordinates as a spatial
feature. In [2] it has been shown that the most important in-
formation of the Spatial Pyramid is contained within its top
level. This representation can be approximated using Spatial
Visual Words. For a subdivision with 2 × 2 subregions, xy-
coordinates representing the upper-left, upper-right, lower-
left or lower-right subregion are used. Hence, the new feature
vector is described by:

v = (a0, a1, ..., an, q(x), q(y)) (2)

where q(· ) denotes the quantization of the respective co-
ordinate. For each of the regions represented by the spatial
quantization the similar appearance features form clusters in
the feature space, as shown in Fig. 1. Note that in order to
achieve this behaviour the values of the xy-coordinates need
to dominate the appearance features. For the SIFT features
the 128 dimensional descriptor is divided by the average de-
scriptor length, so that the sum of all dimensions becomes
approximately one. Then xy-coordinates that are much larger
than the SIFT descriptors’ values are appended for the spatial
feature s. For example, for a 2 × 2 subdivision the four sub-
regions can be represented by [(0, 0), (0, 1), (1, 0), (1, 1)]. In
our experiments we evaluated subdivisions for different grid
sizes up to a continuous approach. In the last case the spatial
regions in which similar appearance features are grouped are
uncovered during the clustering process.
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Fig. 1. Overview of the proposed method: Given an input im-
age, local appearance features (e.g. SIFT) are extracted from
the image based on a densly sampled grid. A spatial mea-
sure is used in order to combine the appearance features with
spatial features. Common spatial features would be xy- or
polar-coordinates. During the training the modified descrip-
tors from all training images are clustered in order to form
a Spatial Visual Vocabulary that holds the important infor-
mation of each spatial region. The features of an image are
quantized with respect to that vocabulary and represented by
a set of Spatial Visual Words. An SVM is used for classifica-
tion. This graphic is best viewed in color; the airplane image
is taken from the Caltech101 database [14].

A subdivision into n bins with a codebook size of |V | us-
ing the Spatial Pyramid is approximated by quantizing n xy-
coordinates with n ∗ |V | spatial visual words. In both cases
the final representation will have the dimension n ∗ |V |. The
only difference is that the pyramid uses the same codebook
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for all subregions, while our codebooks are specific for each
region. In our experiments we will show that very high di-
mensional codebooks contain redundant information and our
approach allows to build smaller more specific codebooks for
each region and therefore, is able to reduce the overall size of
the representation.

2.2. Polar representation

Besides approximating the Spatial Pyramid approach, Spatial
Visual Vocabularies can easily be adapted to different spatial
quantization techniques. We also evaluated a polar coordinate
representation that consists of two parts: 1. The distance to-
ward the center of the image r. 2. The angle α to an upward
axis. The spatial feature is then described by:

s = (q(r), q(sin α), q(cos α)) (3)

Again the SIFT descriptor is divided by the average de-
scriptor length, so that it becomes approximately one. The
radius r is divided by the image diameter so that it becomes
0.5 in the images corner points. In our experiments we eval-
uated a continuous case as well as quantizing all three values
of the spatial feature, e.g. in 0.15 or 0.25 steps. This yields a
representation in which the regions close to the center of the
image are smaller than the regions in the corners of the im-
age, which are more likely to show background clutter. Even
smaller inner regions could be computed by using log-polar-
coordinates. However, experiments showed that the regions
become too small to contain enough information to create a
statistical model, like the Bag-of-Features.

In our experiments we will show that the polar represen-
tation offers a significant advantage over subdiving the image
in a quadtree like manner.

3. EVALUATION

We used the Caltech101 database [14] in order to evaluate
our method. This database contains 101 different object cat-
egories. There are between 30 and 800 images per category,
which sum up to 8677 images for all 101 categories. The im-
ages are mainly about 300x300 pixels in size and show only
one visual object. Therefore, we do not have to consider the
problem of detecting different visual objects in an image.

Following the experimental setup from Lazebnik, Schmid
and Ponce that is described in [2], 30 images of each category
are randomly chosen for training the classifier and densly
sampled SIFT features with a step width of 8 pixels and a
descriptor size of 16 × 16 pixels are extracted. Note that all
SIFT descriptors are computed with an upward orientation
instead of rotating them in the direction of the main gradient.
Hence, our descriptor modifications are directly comparable
to the Spatial Pyramids.

Method Dim.
Classification

rate
Bag-of-Features [2] 200 41.2 ± 1.3%

1-level Spatial Pyramid [2]
Top level 800 55.9 ± 0.9%

Complete pyramid 1,000 57.0 ± 0.8%
2-level Spatial Pyramid [2]

Top level 3,200 60.3 ± 0.9%
Complete pyramid 4,200 64.6 ± 0.7%

200 52.5 ± 0.9%
500 56.1 ± 0.9%

Spatial Visual Vocabulary 800 57.4 ± 0.9%
2× 2 regions 1,000 58.1 ± 0.9%

2,000 60.6 ± 0.9%
4,000 59.9 ± 0.9%
1,000 63.4 ± 0.8%

Spatial Visual Vocabulary 2,000 63.9 ± 0.8%
4× 4 regions 3,200 64.7 ± 0.8%

4,200 64.0 ± 0.8%

Table 1. Classification rates on the Caltech101 database. Spa-
tial Visual Vocabularies are compared with a Bag-of-Features
representation and Spatial Pyramids. The top level of the
1-level pyramid has 2 × 2 subregions and the 2-level pyra-
mid 4× 4 subregions. The pyramids are compared to Spatial
Visual Vocabularies with xy-quantized coordinates that form
similar subregions.

3.1. Comparison with Spatial Pyramids

In the first experiments, which are shown in Table 1, we eval-
uated models that are comparable to the top level of Spatial
Pyramids. The results for complete pyramids using a vocab-
ulary size of |V | = 200 were reproduced with our pipeline
with 56.6% for one level and 64.0% for two levels. The total
dimension of these equals to 1, 000 and 4, 200 respectively.
In comparison with the 1-level Spatial Pyramid we used Spa-
tial Visual Words with quantized xy-coordinates and 2 × 2
subregions. Note that the Spatial Visual Vocabulary achieves
significantly better results than the top level of the Spatial
Pyramid. Also, using the overall same dimensionality it is
significantly better than the complete pyramid. This shows
that specific codebooks, computed for each subregion, repre-
sent the problem domain better than one common codebook.
Concerning the parameterization of the quantized xy-values
we experimented with (0.25, 0.75), (0, 1) and (0, 5) coordi-
nates for the subregions. Our experiments showed that there
is no significant difference, as long as the spatial feature dom-
inates the appearance feature.

When computing smaller codebooks our experiments
show that Spatial Visual Vocabularies yield the same results
as the top level of the pyramid using only 500 dimensions
instead of 800. It is also crucial that we are able to choose the
dimension in a much finer manner than the original pyramid.
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Removing one visual word from a Spatial Visual Vocabulary
reduces the dimension by one, whereas the removal of one
Visual Word in the Spatial Pyramid affects all subregions.

The importance of spatial information for object classi-
fication is shown by the comparison with a Bag-of-Features
representation. Using |V | = 200 visual words the represen-
tation using Spatial Visual Vocabularies achieves a classifi-
cation rate of 52.5%, which outperforms the Bag-of-Features
approach.

Comparable results can be observed for the 2-level pyra-
mid. Using Spatial Visual Words that are quantized into 4×4
subregions our model achieves significantly better results than
the top level of the respective Spatial Pyramid. When us-
ing a vocabulary size of |V | = 1, 000 the classification rates
are better, while the dimensionality is smaller than a third.
Further increasing the dimensionality to 3, 200 and 4, 200 vi-
sual words on the other hand does not show a large improve-
ment. At |V | = 3, 200 the results are as good as the complete
pyramid, but the comparably small difference shows that the
subdivision into 4 × 4 subregions does not allow to further
improve the classification rates by simply increasing the size
of the visual vocabulary. This is also confirmed by the even
larger vocabulary size of |V | = 4, 200, which does not in-
crease the classification rate anymore.

While our method is a significant improvement compared
to the 1-level pyramid from [2] and yields results that are
comparable to a 2-level pyramid with much lower dimension-
ality, the state-of-the-art results using Spatial Pyramids are
still significantly better. In [5] classification rates of up to
76.9% are reported. The are mainly three reasons for this: 1.
More than 70×more SIFT features are extracted from the im-
ages. 2. Complex feature encoding techniques, like Locality-
constrained linear coding [15], are applied. 3. Higher dimen-
sional vocabularies and more pyramid bins are used. This
leads to a increased dimensionality of 168,000, which we
tried to avoid in our work. However, all of these modifications
can also be applied to Spatial Visual Vocabularies. Especially
the sampling of more SIFT features and using feature encod-
ing techniques might be of further interest, since they do not
increase the dimensionality of the representation.

3.2. Spatial configurations

In further experiments we compared different levels of de-
tail for the quantized spatial coordinates from coarse subre-
gions to a continuous approach. In the continuous case we
appended the exact position of a visual word. We used dif-
ferent normalization ranges, having the best results with [0, 1]
for xy-coordinates and [0, 0.5] for the radius. However, as
shown in Table 2, the quantization of the spatial coordinates
adds some level of abstraction to the spatial information that
is very important for the classification. When appending con-
tinuous values the clustering is not able to uncover a set of
regions that is able to perform as good as the quantized ones.

Method
Classification

rate
XY quantized - 2× 2 cells 58.1 ± 0.9%
XY quantized - 4× 4 cells 63.4 ± 0.8%

XY - continuous 55.0 ± 0.9%
Polar quantized - .50 steps 63.7 ± 0.8%
Polar quantized - .25 steps 64.9 ± 0.8%
Polar quantized - .15 steps 64.5 ± 0.8%

Polar - continuous 59.4 ± 0.9%

Table 2. Classification rates on the Caltech101 database using
Spatial Visual Vocabularies with |V | = 1, 000 dimensions.
Different spatial quantization techniques from coarse to con-
tinuous coordinates are evaluated. Also, the xy-quantized
representation is compared with a polar representation.

When comparing the xy-coordinates with the polar coor-
dinates, our results show that the polar representation yields a
significant improvement. There are two aspects to this: First,
the polar subregions are finer than the 2 × 2 quantized xy
values. Nevertheless, the polar measures also outperform the
xy-configuration using 4 × 4 regions that have a comparable
level of detail to .25 quantization steps in the polar representa-
tion. More importantly the polar measure forms finer regions
at the center of the image and coarser at the borders of it. It is
much more likely that the border regions carry background in-
formation and are therefore coarser in the spatial subdivision
of the image.

Note however that this approach uses the assumption that
the dominant object is roughly centered, which is true for
most real life images, but may not hold for very complex
scenes. Nevertheless, our approach would also allow to move
the reference point from the center of an image toward a dif-
ferent region of interest. For example, a proto-object detector
as shown in [16] could be used.

4. CONCLUSION

We presented a novel method for incorporating spatial in-
formation into the Bag-of-Features representation at feature
level. Our experiments on the Caltech101 dataset show that
the lack of spatial information is a crucial disadvantage and
that encoding this information at feature level yields a signif-
icant improvement.

Our method is comparable to the top level of Spatial Pyra-
mids, but computes a Spatial Visual Vocabulary that is spe-
cific for each subregion. By generating such Spatial Visual
Vocabularies our method outperforms the results from the lit-
erature that use the same features and comparable dimension-
ality. Furthermore, by using quantized polar coordinates, in-
stead of a quadtree-like subdivision of the image, the results
could be improved even further.
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