Kai Lienemann, Thomas Pl{\"o}tz and Gernot A. Fink
Multiple Classifier Systems, pages 498-508, 2009.
Recently, Ensembles of local experts have successfully been applied for the automatic detection of drug-induced organ toxicities based on spectroscopic data. For suitable Ensemble composition an expert selection optimization procedure is required that identifies the most relevant classifiers to be integrated. However, it has been observed that Ensemble optimization tends to overfit on the training data. To tackle this problem we propose to integrate a stacked classifier optimized via cross-validation that is based on the outputs of local experts. In order to achieve probabilistic outputs of Support Vector Machines used as local experts we apply a sigmoidal fitting approach. The results of an experimental evaluation on a challenging data set from safety pharmacology demonstrate the improved generalizability of the proposed approach.